首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“Molecular cloning” meaning creation of recombinant DNA molecules has impelled advancement throughout life sciences. DNA manipulation has become easy due to powerful tools showing exponential growth in applications and sophistication of recombinant DNA technology. Cloning genes has become simple what led to an explosion in the understanding of gene function by seamlessly stitching together multiple DNA fragments or by the use of swappable gene cassettes, maximizing swiftness and litheness. A novel archetype might materialize in the near future with synthetic biology techniques that will facilitate quicker assembly and iteration of DNA clones, accelerating the progress of gene therapy vectors, recombinant protein production processes and new vaccines by in vitro chemical synthesis of any in silico-specified DNA construct. The advent of innovative cloning techniques has opened the door to more refined applications such as identification and mapping of epigenetic modifications and high-throughput assembly of combinatorial libraries. In this review, we will examine the major breakthroughs in cloning techniques and their applications in various areas of biological research that have evolved mainly due to easy construction of novel expression systems.  相似文献   

2.
Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.  相似文献   

3.
A key intermediate in general genetic recombination is a structure in which two double-stranded DNA molecules are covalently linked by a single-strand crossover characteristic of a Holliday junction. When the DNA molecules are circular, the recombinant structures take the form of a figure eight. We have used purified E. coli enzymes to construct biparental figure-eight DNA molecules in vitro from the DNA of two partially homologous plasmids. When purified figure-eight structures are transfected into recA- E. coli cells, they are resolved to produce monomeric or dimeric plasmid progeny, apparently by the cutting and joining of the Holliday crossover. The maturation of figure-eight molecules in bacteria is characterized by the formation and recovery of both parental and recombinant types, cross-over at a frequency of up to 50% and the capability for mismatch repair at regions of hybrid DNA. In these three regards, the products of figure-eight maturation resemble recombinant chromosomes formed at meiosis. These observations show that biparental figure eights behave as recombination intermediates that can be resolved into mature recombinants without need for a functional recA+ gene product.  相似文献   

4.
Baker DA 《IUBMB life》2004,56(9):535-540
Completion of several malaria parasite genome sequences and advances in Plasmodium gene manipulation technology, will lead to significant advances in our knowledge of the biology of these organisms. Biochemical analysis of the cyclic nucleotide signalling pathways of P. falciparum has provided important information on malaria parasite development. The Plasmodium purine nucleotide cyclase enzymes have extremely unusual structures and the regulatory mechanisms controlling parasite enzyme activity are distinct from those operating on the analogous host molecules. Study of these enzymes could therefore lead to novel strategies for anti-malarial intervention in addition to providing unique insights into the intriguing biology of the parasite.  相似文献   

5.
Precise DNA manipulation is critical for molecular biotechnology. Restriction enzyme-based approaches are limited by their requirement of specific enzyme sites. Restriction-free cloning has greatly improved the flexibility and speed of precise DNA assembly. Most of these approaches focus on DNA assembly rather than gene removal. Here we present a polymerase chain reaction (PCR)-based cloning method that allows removal of multiple gene segments from plasmids without using restriction enzymes and thermostable ligase. We demonstrate simultaneous removal of three gene segments from a plasmid. This approach could be beneficial to DNA library construction, genetic and protein engineering, and synthetic biology.  相似文献   

6.
A variety of technological advances in recent years have made permanent genetic manipulation of an organism a technical possibility. As the details of natural biological processes for genome modification are elucidated, the enzymes catalyzing these events (transposases, recombinases, integrases and DNA repair enzymes) are being harnessed or modified for the purpose of intentional gene modification. Targeted integration and gene repair can be mediated by the DNA-targeting specificity inherent to a particular enzyme, or rely on user-designed specificities. Integration sites can be defined by using DNA base-pairing or protein-DNA interaction as a means of targeting. This review will describe recent progress in the development of 'user-targetable' systems, particularly highlighting the application of custom DNA-binding proteins or nucleic acid homology to confer specificity.  相似文献   

7.
DNA enzymes are RNA-cleaving single stranded DNA molecules. The structure and the catalytic domain of a DNA enzyme were determined by Santro et al. in 1997. In this study, we have designed several types of DNA enzymes (PB2Dz) targeted to the PB2 mRNA translation initiation region of influenza A virus, and examined their cleavage kinetics, nuclease resistance, and a luciferase gene reporter assay. Using a synthetic substrate, these DNA enzymes were shown to have cleavage activity that is dependent on the length of the substrate recognition domain. To confer serum nuclease resistance to the DNA enzymes, we designed a new type of DNA enzyme that has the N3'-P5' phosphoramidate modification (PB2Dz-N) at each terminal. We examined the activity of this DNA enzyme in vivo. The DNA enzymes used in this study inhibited the expression of the PB2-luciferase gene in COS cells. These results suggest that DNA enzymes are potentially useful as gene inactivating agents of influenza A virus.  相似文献   

8.
重组PCR是通过DNA重叠序列的衔接作用,使多个DNA分子融合在一起的体外扩增技术。它使基因全序列的拼接、基因融合、基因破坏及启动子交换等DNA操作变得简单易行。如今重组PCR已成为DNA分析的有效利器。本研究通过重组PCR在分子进化、基因敲除及基因敲入、启动子研究和转基因植物转化载体的构建等方面的实际应用,分析了该技术的影响因素,并针对引物设计、DNA碱基重叠长度、温度参数等重要反应条件提出了优化方案。  相似文献   

9.
Recombinant DNA techniques for manipulation of genes in Streptomyces are well developed, and currently there is a high level of activity among researchers interested in applying molecular cloning and protoplast fusion techniques to strain development within this commercially important group of bacteria. A number of efficient plasmid and phage vector systems are being used for the molecular cloning of genes, primarily those encoding antibiotic biosynthesis enzymes, but also for a variety of other bioactive proteins and enzymes of known or potential commercial value. In addition, cloning aimed at constructing specialized bioconversion strains for use in the production of chemicals from organic carbon substrates is underway in numerous laboratories. This review discusses the current status of research involving recombinant DNA technologies applied to biotechnological applications using Streptomyces. The topic of potential environmental uses of recombinant Streptomyces is also reviewed, as is the status of current research aimed at assessing the fate and effects of recombinant Streptomyces in the environment. Also summarized is recent research that has confirmed that genetic exchange occurs readily among Streptomyces in the soil environment and which has shown the potential for exchange between recombinant Streptomyces and native soil bacteria.  相似文献   

10.
11.
Production of secondary metabolites is a process influenced by several physico-chemical factors including nutrient supply, oxygenation, temperature and pH. These factors have been traditionally controlled and optimized in industrial fermentations in order to enhance metabolite production. In addition, traditional mutagenesis programs have been used by the pharmaceutical industry for strain and production yield improvement. In the last years, the development of recombinant DNA technology has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathways. These efforts are usually focused in redirecting precursor metabolic fluxes, deregulation of biosynthetic pathways and overexpression of specific enzymes involved in metabolic bottlenecks. In addition, efforts have been made for the heterologous expression of biosynthetic gene clusters in other organisms, looking not only for an increase of production levels but also to speed the process by using rapidly growing and easy to manipulate organisms compared to the producing organism. In this review, we will focus on these genetic approaches as applied to bioactive secondary metabolites produced by actinomycetes.  相似文献   

12.
13.
The search for the ideal biocatalyst.   总被引:9,自引:0,他引:9  
While the use of enzymes as biocatalysts to assist in the industrial manufacture of fine chemicals and pharmaceuticals has enormous potential, application is frequently limited by evolution-led catalyst traits. The advent of designer biocatalysts, produced by informed selection and mutation through recombinant DNA technology, enables production of process-compatible enzymes. However, to fully realize the potential of designer enzymes in industrial applications, it will be necessary to tailor catalyst properties so that they are optimal not only for a given reaction but also in the context of the industrial process in which the enzyme is applied.  相似文献   

14.
S Chang  D Ho  J R McLaughlin  S Y Chang 《Gene》1984,29(3):255-261
Circular heteroduplex DNA molecules introduced into Escherichia coli-competent cells are converted to new recombinant plasmids as a result of enzymatic actions in vivo. A pair of plasmids with partial sequence homology were each linearized at a different position with restriction enzymes, and the termini were made flush with the single-strand-specific S1 nuclease. Duplex molecules were then formed by melting and annealing these plasmid DNAs together. In contrast to linear homoduplex molecules, heteroduplexes circularize and therefore transform E. coli efficiently. Unique DNA sequences on each of the parental strands in the transforming heteroduplexes can be selectively incorporated or deleted as a result of in vivo enzymatic activities in transformed cells. This method permits the generation of new recombinant sequences in vivo without relying solely on the presence of convenient restriction sites for manipulation of DNA fragments in vitro.  相似文献   

15.
In 1973, recombinant DNA technology was born and the age of the "new biotechnology" came upon us. Today we are seeing the amazing results of recombinant DNA technology, hybridoma technology, enzyme engineering and protein engineering. These techniques are exerting major effects on basic research and on health care, diagnostics and agriculture and soon will bring about changes in other industries such as petroleum, mining, foods and chemicals. Entire pathways of primary and secondary metabolism have been cloned and expressed in foreign microorganisms. The development of recombinant DNA technology is having its major impact on the production of rare polypeptides such as mammalian enzymes, hormones, antibodies and biological response modifiers. In addition to natural polypeptides, analogs are being produced by recombinant DNA technology and this has added an extra dimension of excitement to the field. The future is thus insured for the expanded use of microorganisms in the biotechnological world and the continued improvement in microbial processes to reduce the cost of drugs, enzymes and specialty chemicals.  相似文献   

16.
R C Miller  Jr 《Journal of virology》1975,15(2):316-321
Experiments with a mutant of T4, tsL97, temperature sensitive for gene 43, showed that T4 DNA polymerase was necessary in vivo to repair gaps in recombinant molecules. CsCl density gradient experiments showed that molecular recombinants were not repaired when the T4tsL97-infected cells were shifted to 42 C after replication and recombination had taken place. Repair was almost complete when the same procedure was followed with the wild-type T4, or when the T4tsL97-infected cells were incubated at the permissive temperature, 36 C. Long-single-strand production was also affected similarly by the T4tsL97 mutation. All the results were consistent with the theory that gaps exist in many recombinant molecules at the recombinant joint, that T4 DNA polymerase is the enzyme that repairs these gaps in vivo, and that covalent repair of the recombinants leads to extensive long-single-strand production.  相似文献   

17.
We have cloned genes encoding three enzymes of the de novo pyrimidine pathway using genomic DNA from Plasmodium falciparum and sequence information from the Malarial Genome Project. Genes encoding dihydroorotase (reaction 3), orotate phosphoribosyltransferase (reaction 5), and OMP decarboxylase (reaction 6) have been cloned into the plasmid pET 3a or 3d with a thrombin cleavable 9xHis tag at the C-terminus and the enzymes were expressed in Escherichia coli. To overcome the toxicity of malarial OMP decarboxylase when expressed in E. coli, and the unusual codon usage of the malarial gene, a hybrid plasmid, pMICO, was constructed which expresses low levels of T7 lysozyme to inhibit T7 RNA polymerase used for recombinant expression, and extra copies of rare tRNAs. Catalytically-active OMP decarboxylase has been purified in tens of milligrams by chromatography on Ni-NTA. The gene encoding orotate phosphoribosyltransferase includes an extension of 66 amino acids from the N-terminus when compared with sequences for this enzyme from other organisms. We have found that other pyrimidine enzymes also contain unusual protein inserts. Milligram quantities of pure recombinant malarial enzymes from the pyrimidine pathway will provide targets for development of novel antimalarial drugs.  相似文献   

18.
Chymosin, also known as rennin, a milk-clotting enzyme obtained from the stomach of calves, is used in the manufacture of cheese. The production of this enzyme by recombinant DNA technology is now becoming possible. A new source of this enzyme to replace or supplement the animal product or similar, naturally occurring fungal enzymes will be of great economic value.  相似文献   

19.
玉米淀粉生物合成及其遗传操纵   总被引:6,自引:0,他引:6  
张红伟  谭振波  陈荣军  李建生  陈刚 《遗传》2003,25(4):455-460
淀粉是许多植物重要的储藏物质。淀粉突变体以及转基因植物中淀粉变异的特点使我们对淀粉生物合成的过程有了较深入的了解,许多研究的结果揭示了玉米淀粉的生物合成涉及4类酶--ADPG焦磷酸化酶、淀粉合成酶、淀粉分支酶和去分支酶。随着编码这些酶的基因的克隆,利用转基因技术对淀粉合成过程进行遗传操纵业已成为可能,并且在提高淀粉产量以及不同特性淀粉品质的种质资源创新等方面展示出巨大的潜力。 Abstract:Starch is the most important source of calories and a vital storage component in plants.The characterization and production of starch variants from mutation and with transgenic technology has improved our understanding of the synthesis of starch granule.In starch biosynthesis in plants,four enzymes,including ADP-glucose pyrophosphorylase,starch synthase,starch branching enzyme and starch debranching enzyme,are widely accepted from an enormous amount of research aimed primarily at enzyme characterization.As many genes encoding the enzymes and their multiple isoforms in starch biosynthesis pathway have been isolated,genetic manipulation of the starch biosynthesis pathway shows to be a practical way by which starch quantity is increased and starch with novel properties can be created.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号