首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Background: Prescribed burning in peatlands is controversial due to concerns over damage to their ecological functioning, particularly regarding their key genus Sphagnum. However, empirical evidence is scarce.

Aims: The aim of the article is to quantify Sphagnum recovery following prescribed burns.

Methods: We completed nine fires at a raised bog in Scotland, achieving a range of fire severities by simulating drought in some plots. We measured Sphagnum cover and chlorophyll fluorescence Fv/Fm ratio (an estimate of photosynthetic capacity) up to 36 months post-fire.

Results: Cover of dominant Sphagnum capillifolium was similar in unburnt and burnt plots, likely due to its high moisture content which prevented combustion. Burning decreased S. capillifolium Fv/Fm 5 months after fire from 0.67 in unburnt plots to 0.44 in low fire severity plots and 0.24 in higher fire severity (drought) plots. After 22 months, Fv/Fm in burnt plots showed a healthy photosynthetic capacity of 0.76 and no differences between severity treatments. Other Sphagnum species showed similar post-fire recovery though their low overall abundance precluded formal statistical analysis.

Conclusions: S. capillifolium is resilient to low–moderate fire severities and the same may be true for a number of other species. This suggests that carefully applied managed burning can be compatible with the conservation of peatland ecosystem function.  相似文献   

2.
How does time‐since‐fire influence the structural recovery of semi‐arid, eucalypt‐dominated Murray‐Mallee shrublands after fire, and is recovery affected by spatial variation in climate? We assessed the structure and dynamics of a hummock grass, Triodia scariosa N.T. Burb, and mallee eucalypts – two key structural components of mallee shrublands – using a >100 year time‐since‐fire chronosequence. The relative influence of climatic variables, both individually and combined with time‐since‐fire, was modelled to account for spatial variation in the recovery of vegetation structural components. Time‐since‐fire was the primary determinant of the structural recovery of T. scariosa and eucalypts. However, climate, notably mean annual rainfall and rainfall variability, also influenced the recovery of the eucalypt overstorey, T. scariosa cover and mean hummock height. We observed that (i) the mean number of live eucalypt stems per individual decreased while mean individual basal area increased, (ii) cover of T. scariosa peaked at ~30 years post‐fire and gradually decreased thereafter, and (iii) the ‘hummock’ form of T. scariosa occurred throughout the chronosequence, whereas the ‘ring’ form tended not to occur until ~30 years post‐fire. Time‐since‐fire was the key determinant of the structural recovery of eucalypt‐dominated mallee shrublands, but there is geographical variation in recovery related to rainfall and its variability. Fire regimes are likely to have different effects across the geographic range of mallee shrublands.  相似文献   

3.
Density counts were taken for 37 plant species on 12 plots which were assigned to three treatments: spring burn, autumn burn, and control. Post-fire sampling was carried out at intervals of up to 6 years when a second fire treatment was applied, followed by further sampling at 1 year. Most pre-fire species returned by 12 months after fire. Initial recovery was slower on the autumn burn plots and these were surpassed after 12 months by the spring burn plots which remained significantly more diverse until 6 years after fire when the treatments converged. The second fire led to further loss of species, especially on the autumn burn plots. Overall, numbers of individuals were lower in the post-fire community and did not fully recover during the 6 years before the second fire. Of the 37 species followed over the study period, eight had population numbers consistently below pre-fire values, seven showed better recovery on the autumn burn plots, eight showed better recovery on the spring burn plots, and fourteen had population numbers equal to or greater than pre-fire values. Most of the species not fully recovering had relatively poor survival rates. The better recovery rate of species on the autumn burn plots was attributable to better recruitment while the species recovering on the spring burn plots showed better survival and recruitment. The species increasing their numbers after the fire did so through good recruitment or survival, or both. For some species post-fire rainfall or temperature was significantly correlated with greater post-fire recruitment; others were more strongly affected by the treatment itself or more directly by the somewhat different fire intensities in spring and autumn, the differences in soil and litter moisture content, or seasonal variations in soil seed populations.  相似文献   

4.
Results of fire experiments in two important rangeland types in central Australia showed that a winter fire was effective in reducing fuel and was easily controlled. Composition of pasture plants palatable to cattle was either maintained or improved. A summer fire significantly decreased the grass component white increasing the proportion of forbs, particularly unpalatable species. Rainfall, season of burning and reduction of cover appeared to be important factors in controlling the composition of post-fire herbage. There was no important effect of fire on nutrients in either season of burning.  相似文献   

5.
《Acta Oecologica》2000,21(1):1-12
Extensive wildfires have affected the Valencia region in the last two decades. A large portion of the burnt areas has been localised in old fields. Although Mediterranean communities are usually resilient to fire and recover very quickly to the pre-fire state, burnt old fields with a low number of species could show poor recovery capacity. The response capacity of these systems to fire, and, especially, the role of the native herbaceous Brachypodium retusum were studied. Two years after fire, plant cover reached a value of 56 %. Resprouter species were more important in number and in specific cover. B. retusum represented the species with the highest contribution to total plant cover for all the study period. Total biomass in burnt plots was always lower than in unburnt plots. However, B. retusum green biomass showed a quick recovery to pre-disturbance levels, and below-ground biomass was similar in burnt and unburnt plots. Reproductive biomass greatly increased in burnt with respect to unburnt plots during the first post-fire year, with no stalk production in unburnt plots. B. retusum may be considered a promising species for the restoration of extremely degraded lands because of its high resilience to fire.  相似文献   

6.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

7.
Soil seed banks play a major role in the post-fire regeneration of Mediterranean shrublands. They vary throughout the year in species composition, abundance, and readiness to germinate. After fire, germination occurs mainly during the following fall to spring. Time of germination can determine recruitment success. It is unclear what factors control post-fire germination and its timing. We tested the effects of season and fire on the readily germinable soil seed bank of a seeder-dominated shrubland. Plots were burned early and late in the summer season (ES, LS). Soil samples were collected before and after fire, and germinated in a chamber simulating successively autumn, winter, and spring conditions. Samples were kept moistened at all times. Fire intensity was similar between ES and LS. Several species of Cistus and herbs, mostly annuals, were dominant. Most germination occurred during the simulated-autumn period, with little subsequent germination during the following two periods. Germination speed (T 50) during simulated-autumn was similar for shrubs and herbs, and independent of season or fire. Germination was lower for two shrubs (Rosmarinus officinalis, Cistus salvifolius) and higher for herbaceous dicots in LS than in ES soils. Fire reduced monocots and enhanced Cistus. Germination period significantly interacted with fire and season in some groups or species, altering the simulated-autumn germination peak. We demonstrate that the seed bank can germinate swiftly under simulated-autumn conditions. Hence, water availability is the main controlling factor of germination. Fire season differentially affected some species or groups, and could affect the post-fire regeneration.  相似文献   

8.
The population dynamics of two species of agamid (dragon) lizards were studied in the Simpson Desert, central Australia, over a period of 7 years, and modelled in relation to rainfall. Both species have annual life cycles, with adults predominating during the breeding season in spring and summer and juveniles predominating in other seasons. Within years, juvenile abundance in both species in autumn and winter was related most strongly to rainfall in the preceding summer and autumn. This pattern suggests that rainfall enhances survival, growth and possibly clutch size and hatching success. Between years, however, rainfall drove successional change in the dominant plant species in the study area, spinifex Triodia basedowii, causing in turn a shift in the relative abundance of the two species. Thus, the central netted dragon Ctenophorus nuchalis was most numerous in 1990 when vegetation cover was <10%, but declined dramatically in abundance after heavy rainfall at the end of that year. In contrast, the military dragon C. isolepis achieved greatest abundance following heavy rains in the summers of 1990 and 1994, when spinifex cover increased to >20%, and remained numerically dominant for much of the study. We suggest that drought-wet cycles periodically reverse the dominance of the two species of Ctenophorus, and perhaps of other lizard species also, thus enhancing local species diversity over time. Further long-term studies are needed to document the population dynamics of other species, and to identify the factors that influence them. Received: 11 September 1998 / Accepted: 10 February 1999  相似文献   

9.
Banksia woodlands are renowned for their flammability and prescribed fire is increasingly employed to reduce the risk of wildfire and to protect life and property, particularly where these woodlands occur on the urban interface. Prescribed fire is also employed as a tool for protecting biodiversity assets but can have adverse impacts on native plant communities. We investigated changes in species richness and cover in native and introduced flora following autumn prescribed fire in a 700‐hectare Banksia/Tuart (Eucalyptus gomphocephala) woodland that had not burnt for more than 30 years. Effectiveness of management techniques at reducing weed cover and the impacts of grazing by Western Grey Kangaroo (Macropus fuliginosus) postfire were also investigated. Thirty plots were established across a designated burn boundary immediately before a prescribed fire in May 2011, and species richness and cover were measured 3 years after the fire, in spring of 2013. Fencing treatments were established immediately following the fire, and weed management treatments were applied annually in winter over the subsequent 3 years. Our results indicate that autumn prescribed fire can facilitate increases in weed cover, but management techniques can limit the establishment of targeted weeds postfire. Postfire grazing was found to have significant adverse impacts on native species cover and vegetation structure, but it also limited establishment of some serious weeds including Pigface (Carpobrotus edulis). Manipulating herbivores in time and space following prescribed fire could be an important and cost‐effective way of maintaining biodiversity values.  相似文献   

10.
《Acta Oecologica》2004,25(3):137-142
We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently–burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.  相似文献   

11.
Knox KJ  Clarke PJ 《Oecologia》2006,149(4):730-739
The season in which a fire occurs may regulate plant seedling recruitment because of: (1) the interaction of season and intensity of fire and the temperature requirements for seed release, germination and growth; (2) post-fire rainfall and temperature patterns affecting germination; (3) the interaction of post-fire germination conditions and competition from surrounding vegetation; and (4) the interaction of post-fire germination conditions and seed predators and/or seedling herbivores. This study examined the effects of different fire intensities and fire seasons on the emergence and survival of shrubs representing a range of fire response syndromes from a summer rainfall cool climate region. Replicated experimental burns were conducted in two seasons (spring and autumn) in 2 consecutive years and fuel loads were increased to examine the effects of fire intensity (low intensity and moderate intensity). Post-fire watering treatments partitioned the effects of seasonal temperature from soil moisture. Higher intensity fires resulted in enhanced seedling emergence for hard-seeded species but rarely influenced survival. Spring fires enhanced seedling emergence across all functional groups. Reduced autumn recruitment was related to seasonal temperature inhibiting germination rather than a lack of soil moisture or competition. In Mediterranean-type climate regions, seedling emergence has been related to post-fire rainfall and exposure of seeds to seed predators. We think a similar model may operate in temperate summer rainfall regions where cold-induced dormancy over winter exposes seeds to predators for a longer time and subsequently results in recruitment failure. Our results support the theory that the effect of fire season is more predictable where there are strong seasonal patterns in climate. In this study seasonal temperature rather than rainfall appears to be more influential.  相似文献   

12.
Rare species can play important functional roles, but human‐induced changes to disturbance regimes, such as fire, can inadvertently affect these species. We examined the influence of prescribed burns on the recruitment and diversity of plant species within a temperate forest in southeastern Australia, with a focus on species that were rare prior to burning. Floristic composition was compared among plots in landscapes before and after treatment with prescribed burns differing in the extent of area burnt and season of burn (before–after, control‐impact design). Floristic surveys were conducted before burns, at the end of a decade of drought, and 3 years postburn. We quantified the effect of prescribed burns on species grouped by their frequency within the landscape before burning (common, less common, and rare) and their life‐form attributes (woody perennials, perennial herbs or geophytes, and annual herbs). Burn treatment influenced the response of rare species. In spring‐burn plots, the recruitment of rare annual herbs was promoted, differentiating this treatment from both autumn‐burn and unburnt plots. In autumn‐burn plots, richness of rare species increased across all life‐form groups, although composition remained statistically similar to control plots. Richness of rare woody perennials increased in control plots. For all other life‐form and frequency groups, the floristic composition of landscapes changed between survey years, but there was no effect of burn treatment, suggesting a likely effect of rainfall on species recruitment. A prescribed burn can increase the occurrence of rare species in a landscape, but burn characteristics can affect the promotion of different life‐form groups and thus affect functional diversity. Drought‐breaking rain likely had an overarching effect on floristic composition during our study, highlighting that weather can play a greater role in influencing recruitment and diversity in plant communities than a prescribed burn.  相似文献   

13.
Bennett  L.T.  Judd  T.S.  Adams  M.A. 《Plant Ecology》2003,164(2):185-199
Fire often increases the productivity of perennial tussock grasslands inmesic environments but can reduce growth for one or more growing seasons inaridand semi-arid environments. We examined effects of single-burns on growth andnutrient content of grasslands in sub-tropical, northwestern Australia. Thesegrasslands were dominated by Themeda triandra, a speciesoften managed by regular burning in wetter temperate and tropical zones. Burnswere in the late dry season and were replicated using small plots (5 ×5-m) within fenced areas at two sites.Total projective cover and aboveground biomass were significantly less in burntplots relative to controls for 2.5 years after burning despite four growingseasons, including the first summer, of above-average rainfall. Recovery ofburnt plots was hindered by an extended dry period in the second year,demonstrating that rainfall in subsequent seasons can be as important asrainfall in the first season in determining post-burn productivity ofgrasslandsin semi-arid environments. Greater decreases in grass cover in burnt plotsduring the extended dry period may have been due to less standing dead andlitter than controls, and therefore less insulation from extreme summertemperatures, although relationships between cover changes and cover at thestart of the period were weak. With the exception of increased pH near grasstussocks, burning had little effect on chemical characteristics of surfacesoilsin the first week. Concentrations of N, and particularly P, in abovegroundplantmaterial were greater in burnt plots four months after burning, followingsummerrains, but were either less than or similar to those in controls withincreasingly dry conditions. Significantly lower concentrations of P in greenfoliage from burnt plots during dry seasons, when uptake from soil pools wouldbe minimal, indicated that burning decreased P retranslocation from plantstores. However, we found no evidence that single-burns increased nutrientlimitations to growth because plant contents of N and P were comparable inburntand control plots during periods of adequate water supply. Our data supportprevious generalizations that prescribed burning of perennial tussockgrasslandsin semi-arid environments is mostly unnecessary because putative benefits ofincreased productivity and forage quality, characteristic of more mesicenvironments, were not realized.  相似文献   

14.
Gimingham  C. H.  Hobbs  R. J.  Mallik  A. U. 《Plant Ecology》1981,46(1):149-155
The paper describes studies of post-fire succession in heathland vegetation in N.E. Scotland, dominated by Calluna vulgaris. A preliminary model (Legg, 1978) suggested good agreement between simulation of succession on the basis of a Markov chain and observations of stands at different stages of development after burning, at least in the earlier stages. Vegetation transitions are currently being recorded in permanent plots on burnt areas. First results confirm the view that (a) the post-fire succession has the properties of a Markov process, (b) this type of model remains valid when constructed from records of actual transitions, rather than data obtained by inference from evidence of transition. Comparing successional events in stands where, at the time of burning, the Calluna population was in pioneer-, building-, mature-and degenerate phases, shows that transition matrices generally agree with the Markov hypothesis, but not in the case of stands where Calluna was degenerate when burnt. The composition of establishing vegetation 1 year after fire is not confined to species normally associated with the early stages of succession, but reflects the composition of the stand before burning. Redevelopment after fire is described in terms of an initial floristic composition of species with strategies permitting early re-establishment, selected by the recurrence of the fire factor. Subsequent transitions represent changes in their relative abundance due to differing growth properties and competitive interactions. This interpretation applies only under conditions of recurrent incidence of fire (normally once in 10–15 yr). If fire does not recur, Calluna stands pass into the degenerate phase, where changes in the nature of relay floristics may come into play (e.g. with tree colonization).Nomenelature follows Clapham, Tutin & Warburg (1962) for vascular plants; Smith (1978) for bryophytes.  相似文献   

15.
Two areas of Chionochloa rigida tussock grassland on Flagstaff Hill were burnt in autumn and spring 1976, respectively. Plant species cover and frequency were recorded in 1977 and 1985. Initially, plant cover and frequency were lower, and the area of bare ground was greater, on the autumn burnt site. After nine years, cover and frequency values were similar for most species, and bare ground was rare, on both sites. Over this period, recovery in size of indigenous tussock-forming physiognomic dominants resulted in suppression of intertussock sub-shrubs, herbs and grasses that were initially favoured by reduction of competition after fire. Plant species most tolerant of fire have features that protect the meristem, for instance an underground perennating organ or dense tillering.  相似文献   

16.
Question: Are seed size and plant size linked to species responses to inter‐annual variations in rainfall and rainfall distribution during the growing season in annual grasslands? Location: A 16‐year data set on species abundance in permanent plots 15 km north of Madrid in a Quercus ilex subsp. ballota dehesa. Methods: At species level, a GLM was used to analyse the effects of various rainfall indices (total autumn rainfall, early autumn rainfall and spring drought) on species abundance residuals with respect to time and topography. We also assessed the importance of seed size and plant size in the species responses at community level using species as data points. Seed mass and maximum stem length were used as surrogates for seed size and plant size, respectively. Results: Seed mass and plant size may explain some of the fluctuations in the floristic composition of annual species associated with autumn rainfall patterns. Species that are more abundant in dry autumns have greater seed mass than those species that are more abundant in wet autumns. Early autumn rainfall seems to favour larger plants. Conclusions: Our empirical results support the hypothesis that autumn rainfall patterns affect the relative establishment capacity of small and large seedlings in annual species.  相似文献   

17.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

18.
Species with fire stimulated reproduction (fsr) are common in Mediterranean climate ecosystems. We investigated how season of, and time since, fire affects seed production in Podocarpus drouynianus F. Muell., a dioecious resprouting coniferous shrub endemic to the jarrah (Eucalyptus marginata Sm.) forests of southwestern Australia, and if the now largely managed fire regime in these forests poses a risk to its persistence. We hypothesised that, like other species showing fsr, seed production in P. drouynianus would be limited to the first few years following fire and seed set would be lower after spring burns. Mature plants regenerated rapidly from buried stem tissue (lignotuber) after fire, producing abundant sporophylls in autumn 12–18 months later. Stands burnt in autumn showed peak seed production 1 year later, while for those burned in spring, peak seed production was delayed until the second autumn after fire. Limited seed production occurred for up to 3 years following fire, but no seed production was observed in longer unburnt (>10 years since fire) stands. While we did not observe a significant impact of fire season on seed production, seed weight and viability were lower for spring-burnt plants. Population-level effects associated with plant density may also have negative impacts on P. drouynianus demography, with females within a small population burnt in autumn producing very few seeds 12 months following fire. Interactions between climate change, fire regimes and fire management practices need to be considered in order to best safeguard the long-term persistence of this conifer species.  相似文献   

19.
Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories (‘pyrodiversity’), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is maintained.  相似文献   

20.
Abstract. Bryophyte dynamics after fire in the Mediterranean macchia of Southern Italy was studied both by diachronic and synchronic approaches. Changes of bryophyte cover and species composition were found in relation to both age and fire intensity. During the first 2 yr after fire, bryophytes dominated the plots which had experienced the highest fire intensity while herbs were dominant in plots affected by lighter fires. Pioneer species, such as Funaria hygrometrica, Barbula convoluta and Bryum dunense, characterized recent intense fires, whereas Bryum torquescens, B. radiculosum and B. ruderale were dominant after less intense burning. Pleurochaete squarrosa, Tortula ruraliformis and Tortella flavovirens dominated intermediate successional stages. Pleurocarpous mosses were dominant only in the older closed stands. Different patterns of regeneration strategies were described: spores dominated early stages of intense fire, while vegetative propagules characterized later successional stages and less severely burned areas. Although bryophytes usually have a low abundance in Mediterranean vegetation, their role in post-fire vegetation dynamics may be locally enhanced according to burning conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号