首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

2.
The seasonal development of phloem in the stems of Siberian larch (Larix sibirica Ldb.) was studied over two seasons on 50–60-year-old trees growing in a natural stand in the Siberian forest-steppe zone. Trees at the age of 20–25 years were used to study metabolites in differentiating and mature phloem elements, cambial zone, and radially growing xylem cells in the periods of early and late wood formation. The development of the current-year phloem in the stems of 50–60-year-old trees started, depending on climatic conditions, in the second-third decades of May, 10–20 days before the xylem formation, and ended together with the shoot growth cessation in late July. Monitoring of the seasonal activity of cambium producing phloem sieve cells and the duration of their differentiation compared to the xylem derivatives in the cambium demonstrated that the top production of phloem and xylem cells could coincide or not coincide during the season, while their differentiation activity was always in antiphase. Sieve cells in the early phloem are separated from those in the late phloem by a layer of tannin-containing cells, which are formed in the period when late xylem formation starts. The starch content in the structural elements of phloem depends on the state of annual xylem layer development. The content of low molecular weight carbohydrates, amino acids, organic acids, and phenols in phloem cells, cambial zone, and xylem derivatives of the cambium depends on the cell type and developmental stage as well as on the type of forming wood (early or late) differing by the cell wall parameters and, hence, by the requirement for assimilates. Significant differences in the dynamics of substances per dry weight and cell were observed during cell development.  相似文献   

3.
 The development of pectin structural features during the differentiation of cambial derivatives was investigated in aspen (Populus tremula L. × P. tremuloides Michx.) using biochemical and immunocytochemical methods. Comparisons were also made between active and resting tissues. Active tissues, in particular cambial cells and phloem derivatives, were characterized by a high pectin content. Use of antibodies raised against arabinan side chains of rhamnogalacturonan 1 (LM6), as well as biochemical analysis, revealed an obvious decrease from the cortex to the differentiating xylem. Galactan side chains, detected with LM5 antibodies, were present mainly in the cambial zone and enlarging xylem cells. In contrast, they were totally absent from sieve-tube cell walls. Image analysis of LM5 immunogold labelling in the cambial zone showed a clustered distribution of galactan epitopes in the radial walls, a distribution which might result from the association of two different periodic processes, namely the exocytosis of galactan and wall expansion. Cessation of cambial activity was characterized by cell wall thickening accompanied by a sharp decrease in the relative amount of pectin and a lowering of the degree of methylesterification. The data provide evidence that the walls of phloem and xylem cells differ in their pectin composition even at a very early stage of commitment. These differences offer useful tools for identifying the initial cells among their immediate neighbours. Received: 12 June 1999 / Accepted: 20 October 1999  相似文献   

4.
Circular patches of bark were surgically isolated on the sides of sugar maple (Acer saccharum Marsh.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control sites cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) prevented initiation of cambial activity and xylem and phloem development in isolated areas of half of the trees. Varying degrees of cambial activity (periclinal divisions) occurred in the remaining isolated areas, but normal cambial activity and xylem and phloem development were prevented. Isolation of bark after initiation of cambial activity and phloem differentiation, but prior to initiation of xylem differentiation, resulted in the formation of very narrow xylem and phloem increments with atypically short vessel members and sieve-tube members, respectively. The xylem increments consisted primarily of parenchyma cells. Isolation of bark after initiation of xylem differentiation resulted in curtailment of secondary wall formation in the last-formed part of many increments. The last-formed vessel members of all these xylem increments were atypically short. Similarly, the last formed sieve-tube members of corresponding phloem increments were atypically short. The atypically short cells in the xylem and phloem of isolated areas reflected the effect of isolation on the cambial region, viz., the subdivision of all fusiform cells into strands of cells. Ultimately, the strands of short fusiform cells lapsed into maturity, leaving only strands of parenchymatous elements between xylem and phloem.  相似文献   

5.
Circular patches of bark were surgically isolated on the sides of trembling aspen (Populus tremuloides Michx.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control trees cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) did not prevent initiation of cambial activity and of phloem differentiation in spring but continued normal cambial activity and phloem developmented were prevent. Xylem differentiation was essentially prevented by isolation of tissues during the dormant season. The ultimate effect of isolation of the bark on the cambium, either during the dormant season or during the growing season, was subdivision of all fusiform cambial cells into strands of parenchymatous elements; the ultimate effect on the newly formed phloem was early death of the sieve elements. The most conspicuous effect of isolation of the bark after xylem differentiation had begun was the curtailment of secondary wall formation. Shortening of cells of the cambial region was reflected in the length of the vessel members which differentiated from such cells. These results indicate that normal cambial activity and xylem and phloem development require a supply of currently translocated regulatory substances from the shoots.  相似文献   

6.
The stem of Circaeaster agrestis Maxim. is very short but the length of hypocotyl is comparatively long, almost occupying the whole length of the plant. This tender hypocotyl is mainly supported by the thickening of cuticle on the outer wall of the epidermal cell and the primary xylem in the center. Between primary xylem and primary phloem there are 2–3 layers of parenchymatous cells, regularly or irregularly arranged, but no cambial zone can be recognized. The transition region where root and stem meet showed no evidence of twisting, splitting or inversion of the strands in the primary vascular tissues which are common in most of the dicots. The extending cotyledon traces differentiate directly from the parenchymatous cells which locate on the outside of the poles of primary xylem. The first and the second leaf traces are organized in the middle of the primary phloem.  相似文献   

7.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

8.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

9.
Wilson , Brayton F. (U. California, Berkeley). Increase in cell wall surface area during enlargement of cambial derivatives in Abies eoncolor . Amer. Jour. Bot. 50(1): 95–102. Illus. 1963.— Dimensions of fusiform cells (tracheids and sieve cells) and ray cells were measured from samples of the 1960 xylem and phloem increment of 5 trees felled at monthly intervals from April through July, 1960. Calculations using these measurements gave the magnitude, direction and rate of increase in cell wall surface area during enlargement. Although 14 times more tracheids than sieve cells were produced, both cell types enlarged mostly in a radial direction (up to 400%) at the same rate (20–33 × 103μ2 wall surface area/day) to the same final size. Fusiform cambial cells doubled their wall area between successive periclinal divisions. Calculations showed that ⅞ of this increase was in the radial walls of the daughter cells at a rate comparable to that in enlarging tracheids and sieve cells; the other ⅞ was from cell plate formation at an estimated rate of 187–327 × 103μ2/day. Enlargement of derivatives in the radial direction largely determined the amount of increase in wall area. Besides radial enlargement, tracheids also elongated (up to 13%) and phloem cells enlarged tangentially (sieve cells up to 36%; pholem ray cells up to 60%). The relationships of enlarging tracheids and xylem ray cells are discussed, and it is suggested that slippage may occur between the developing walls.  相似文献   

10.
Seedlings of Lepidium sativum L. (cress) were germinated and grown under ten different growth conditions to assess the effects of environment on root stelar parenchyma development. Stelar parenchyma did not undergo autolysis in any of the treatments, refuting an earlier suggestion that certain ‘prostelar’ cells (cells adjacent to primary xylem and primary phloem) are replaced by cambial derivatives.  相似文献   

11.
The dynamics of phloem growth ring formation in silver fir (Abies alba Mill.) and Norway spruce (Picea abies Karst.) at different sites in Slovenia during the droughty growing season of 2003 was studied. We also determined the timing of cambial activity, xylem and phloem formation, and counted the number of cells in the completed phloem and xylem growth rings. Light microscopy of cross-sections revealed that cambial activity started on the phloem and xylem side simultaneously at all three plots. However, prior to this, 1–2 layers of phloem derivatives near the cambium were differentiated without previous divisions. The structure of the early phloem was similar in silver fir and Norway spruce. Differences in the number of late phloem cells were found among sites. Phloem growth rings were the widest in Norway spruce growing at the lowland site. In all investigated trees, the cambium produced 5–12 times more xylem cells than phloem ones. In addition, the variability in the number of cells in the 2003 growth ring around the stem circumference of the same tree and among different trees was higher on the xylem side than on the phloem side. Phloem formation is presumably less dependent on environmental factors but is more internally driven than xylem formation.  相似文献   

12.
DIGBY  J.; WAREING  P. F. 《Annals of botany》1966,30(3):539-548
When indole-3-acetic acid (IAA) is applied to woody shoots cambialdivision is stimulated and the cambial derivatives differentiateto produce xylem tissue. When gibberellic acid (GA) is applied,cambial division occurs but the resultant derivatives on thexylem side of the cambium remain undifferentiated. The relativelevels of applied IAA and GA are important in determining whethermainly xylem or phloem tissue is produced. High IAA/low GA concentrationsfavour xylem formation, whereas low IAA/high GA concentrationsfavour phloem production. The new phloem tissue produced asa result of hormone treatment is fully differentiated, containingsieve elements and sieve plates. IAA is important in promotingthe elongation of the cambial derivatives to produce xylem vesseland fibre elements, though in the case of xylem fibres appliedGA causes further elongation. IAA is an important factor indetermining vessel diameter in the ring-porous species Robiniapseudacacia, high levels of applied IAA giving wide springwood-typevessels and low levels giving narrow ‘summerwood’vessels.  相似文献   

13.
The dormant cambial zone consisted of 5–6 cell layers in the main stem of Pinus sylvestris L. trees that were ca. I00 years old. Time of cambial reactivation was comparable at one (bottom) and 8 (top) meters above the ground. In spring, when the cambium reactivated, the number of cambial cells slightly increased and phloem cells were formed. The production of xylem cells followed 3–4 weeks later. The formation of xylem cells decreased, whereas that of phloem cells increased between late June and early July. Cambial reaction in 1-year-old cuttings that were debudded and treated apically with IAA in lanolin was similar to that in the ca. 100-year-old main stem. However, in debudded cuttings treated with plain lanolin, the number of cells in the carnbial zone decreased during the first week of culture, and only a few phloem cells were formed. Later, the fusiform cambial cells of the cambial zone were divided transversely and lost their typical morphology. It is proposed that some factor(s) from roots may stimulate the initiation of cambial cell division, because when the cambium reactivated, the number of cambial cells slightly increased in the ca. 100-year-old main stem, but decreased in the 1-year-old cuttings.  相似文献   

14.
The cambial tissues of a Populus balsamifera, Balsam poplar clone were studied during a growth season. The Klason and acid-soluble lignin contents were determined as well as the carbohydrate monomer distribution and the protein content. Both the phloem and the xylem sides of the cambial region were examined. The samples were analyzed by thioacidolysis and structures of dimeric products were determined by mass spectrometry after desulphuration. Chemical analysis of samples during the growth season was combined with microscopy of embedded specimens that showed the state of cell differentiation at the time of sampling. In spring and early summer, growth is very rapid and the intention was to collect tissue in which exclusively the middle lamella/primary cell wall had begun to lignify. The Klason lignin, protein content and carbohydrate monomer distribution showed that all the specimens from the cambial tissues sampled during a growth season contained predominantly middle lamella and primary walls; except for the developing xylem sampled in August where the carbohydrate composition showed that secondary walls were present. Thioacidolysis showed that the lignin from the cambial tissues had more condensed structures than the lignin from the reference balsam poplar clone wood. More guaiacyl than syringyl units were detected and mass spectrometry showed that the cambial tissues contained more lignin structures with end-groups than the reference sample. These results suggest that lignification in the cambial layer and early developing xylem may take place predominantly in a bulk fashion during the summer.  相似文献   

15.
During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.  相似文献   

16.
The cambium in black locust consists of several layers of cells at all times. Cambial reactivation (division) is preceded by a decrease in density of cambial cell protoplasts and cell wall thickening but not by cell enlargement. During the resumption of cambial activity, periclinal divisions occur throughout the cambial zone. Early divisions contribute largely to the phloem side. The period of greatest cambial activity coincides with early wood formation. Judged by numerous collections made during two seasons (October, 1960-October, 1962) the seasonal cycle of phloem development is as follows. Phloem differentiation begins in early April, ends in late September. The amount of phloem produced is quite variable (range: 1-10 bands of sieve elements per year). Cessation of function begins with the accumulation of definitive callose in the first-formed sieve elements and spreads to those more recently formed. By late November all but the last-formed sieve elements are collapsed. All sieve elements are collapsed by mid-winter and before the resumption of new phloem production in spring. Phloem differentiation precedes xylem differentiation by at least 1 week, and apparently functional sieve elements are present 3 weeks before new functional vessel elements. Xylem and phloem production ends simultaneously in most trees.  相似文献   

17.
Mature needles and elongating current year's needles of Pinus strobus growing in Massachusetts and P. brutia growing in Israel were collected monthly or bimonthly for seasonal analysis of leaf cambial activity. Mature needles produced secondary phloem but no xylem, and, regardless of the season, had a cambial zone from 2 to 3 cell layers wide. In the current year's needles maturation was basipetal and the procambium differentiated into primary xylem, primary phloem, and the phloem-producing vascular cambium before needle maturity. One- and 2-year-old needles of Pinus strobus produced slightly over 4 cell layers of phloem between April 15 and September 1 of 1983, with a peak production rate of about 2 cell layers per month in May and early June. One-year-old needles of P. brutia produced about 6 phloem cell layers in 1983, with phloem being produced throughout the year except in midsummer. This was contrasted by fall and winter dormancy in needles of P. strobus.  相似文献   

18.
Five Broussonetia papyrifera (L.) Vent. trees were selected in a natural stand located on the campus of Peking University, Beijing, China. The trees were ca. 5-6 years old, 3-4 m tall,and had diameters of about 3 cm measured 1.2 m above ground level. They were samplied at monthly intervals between January 28 and March 25, then at ten-day intervals between March 25 and May 20,1991. On each occasion, one 3-year-old shoot was cut from the tree. Two blocks (about 1 cm ×1 cm) contained peridern,phloem,cambium and wood with more than one annual ring were cut from every shoot,fixed in FAA,and then were prepared for anatomical studies. And on each occasion,7 layers of tissues (from periderm to mature xylem)were scraped off from the shoots and 100 mg of separate tissues were randomly extracted in 0.1 ml of 20% sucrose. The extracts were used for isoelectric-focusing in polyacrylamide gel slabs (85 mm × 60 mm × 1 mm). Benziding and odianisidine was used as substrate. After electrophoresis the gel slabs were placed in the substrate buffer until the isozyme bands were visible. Owing to the ring-porous structure of the wood of Broussonetia papyrifera, the cambial activity was comparable with that in the most ring-porous dicots. The cambium activity started about ten days before bud sprouting. On April 4,the dormant cambial zone consisted of ca. 4 cell layers. The trees did not sprout until April 16,but ca. 2 cell layers of immature xylem and phloem were formed concomitantly. Ten days later, 8-9 cell layers of xylem and ca. 5 cell layers of phloem were formed. The formation of immature phloem cells continued to increase slowly between April 4 and May 20, whereas that of immature xylem cells increased rapidly between April 4 and April 26,and then decreased between April 26 and May 20. It was suggested that differentiation of immature xylem into mature xylem lasted ca. 10 days,whereas that of immature phloem into mature one lasted ca. 20 days. There were totally 6 peroxidase isozyme bands in dormant cambial region and functional phloem. Variation of zymogram in cambial region occurred before cambial activity activated which is followed by more or less minor changes of bands in all other tissues. These indicated that several significant changes were related to the level of endogenous IAA and differentiation of vascular tissues.  相似文献   

19.
The cambium of Pinus bungeana Zucc. resumed its activities in early April with cell proliferation and increase in immature xylem and phloem cells. Some mature xylem cells occurred dunng the last ten days of April. The xylem and phloem were rapidly formed after May. The late- wood was firstly formed in the beginning of June. It ceased to produce new xylem in early August, mid phloem cells in mid-September. The seasonal changes of polysaccharide grain content in the tissues of P. bungeana evidenced significant correlation with the annual cycle of cambial activity. Polysaccharide grains continued to increase before and after cambial reactivity and then decreased gradaally from June onwards after the late-wood had been firstly formed, until almost disappeared by next January, and again were gradually accumulated after March. Isoenzymic study revealed only one band of amylase after cambium reactivity, three peculiar bands after ceasing to produce xylem, and another two peculiar bands that occurred in early December. These 5 bands all disappeared after reactivity of cambium.  相似文献   

20.
Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de‐differentiation, and re‐differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 30–40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号