首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), is an F-actin binding protein that is particularly enriched in the nucleolus of mouse cells. Here, we show that the nucleolar localization of NDH II of murine 3T3 cells depended on an ongoing rRNA synthesis. NDH II migrated out of the nucleolus after administration of 0.05 microg/ml actinomycin D, while nucleolin and the upstream binding factor (UBF) remained there. In S phase-arrested mouse cells, NDH II was frequently found at the nucleolar periphery, where it was accompanied by newly synthesized nucleolar RNA. Human NDH II was mainly distributed through the whole nucleoplasm and not enriched in the nucleoli. However, in the human breast carcinoma cell line MCF-7, NDH II was also found at the nucleolar periphery, together with the tumor suppressor protein p53. Both NDH II and p53 were apparently attached to the F-actin-based filamentous network that surrounded the nucleoli. Accordingly, this subnuclear structure was sensitive to F-actin depolymerizing agents. Depolymerization with gelsolin led to a striking accumulation of NDH II in the nucleoli of MCF-7 cells. This effect was abolished by RNase, which extensively released nucleolus-bound NDH II when added together with gelsolin. Taken together, these results support the idea that an actin-based filamentous network may anchor NDH II at the nucleolar periphery for pre-ribosomal RNA processing, ribosome assembly, and/or transport.  相似文献   

2.
Secondary structures of nucleic acids play an importantrole in regulating their transactions as carriers of thegenetic information, including DNA replication, trans-cription, RNA processing, RNA transport, and translation.Resolving double-stranded (ds) DNA or RNA is usually anenergy-dependent process that can be accomplished byproteins termed DNA or RNA helicases, which are presentin all prokaryotic and eukaryotic organisms. Earlier attemptsto find mammalian helicases led to the detect…  相似文献   

3.
RNA helicase A (RHA), a DExD/H box protein, plays critical roles in a wide variety of cellular or viral functions. RHA contains a conserved core helicase domain that is flanked by five other domains. Two double-stranded RNA binding domains (dsRBD1 and dsRBD2) are at the N-terminus, whereas HA2 (helicase associated 2), OB-fold (oligonucleotide- or oligosaccharide-binding fold), and RGG (repeats of arginine and glycine–glycine residues) domains are at the C-terminus. The role of these domains in the helicase activity of RHA is still elusive due to the difficulty of obtaining enzymatically active mutant RHA. Here, we purified a series of mutant RHAs containing deletions in either N-terminus or C-terminus. Analysis of these mutant RHAs reveals that the dsRBDs are not required for RNA unwinding, but can enhance the helicase activity by promoting the binding of RHA to substrate RNA. In contrast, deletion of C-terminal domains including RGG, OB-fold, and HA2 does not significantly affect the binding of RHA to substrate RNA. However, HA2 is essential for the RNA unwinding by RHA whereas the RGG and OB-fold are dispensable. The results indicate that the core helicase domain alone is not enough for RHA to execute the unwinding activity.  相似文献   

4.
5.
Although dedifferentiation, transformation of differentiated cells into progenitor cells, is a critical step in the regeneration of amphibians and fish, the molecular mechanisms underlying this process, including epigenetic changes, remain unclear. Dot blot assays and immunohistochemical analyses revealed that, during regeneration of zebrafish fin, the levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are transiently reduced in blastema cells and cells adjacent to the amputation plane at 30 h post-amputation (hpa), and the level of 5mC, but not 5hmC, is almost restored by 72 hpa. We observed that the dedifferentiated cells showed reduced levels of 5mC and 5hmC independent of cell proliferation by 24 hpa. Furthermore, expressions of the proposed demethylation- and DNA repair-related genes were detected during fin regeneration. Taken together, our findings illustrate that the transient reduction of 5mC and 5hmC in dedifferentiated cells is associated with active demethylation during regeneration of zebrafish fin.  相似文献   

6.
7.
8.
The helicases provide duplex unwinding function in an ATP-dependent manner and thereby play important role in almost all the nucleic acids transaction. Since stress reduces the protein synthesis by affecting the cellular gene expression machinery, so it is evident that molecules involved in nucleic acid processing including translation factors/helicases are likely to be affected. Earlier pea DNA helicase 45 (PDH45), a homolog of translation initiation factor 4A (eIF4A) was reported to play important role in salinity stress tolerance in tobacco and Bangladeshi rice variety Binnatoa. We report here the overexpression of PDH45 gene in the indica rice variety IR64, via Agrobacterium-mediated transformation. Molecular analysis of the transgenics revealed stable integration of the transgene in the T1 generation. Enhanced tolerance to salinity was observed in the plants transformed with PDH45 gene. Better physiological and yield performances including endogenous nutrient contents (N, P, K, Na) of the transgenics under salt treatment were observed as compared with wild type (WT), vector control and antisense transgenics. All these results indicated that the overexpression of PDH45 in the IR64 rice transgenics enable them to perform better with enhanced salinity stress tolerance and improved physiological traits. Based on the homology of PDH45 protein with eIF4A protein we suggest that it may act at the translational level to enhance or stabilize protein synthesis under stress conditions.  相似文献   

9.
Thymine DNA glycosylase (TDG) is a base excision repair enzyme that interacts with the small ubiquitin-related modifier (SUMO)-targeted ubiquitin E3 ligase RNF4 and functions in the active DNA demethylation pathway. Here we showed that both SUMOylated and non-modified forms of endogenous TDG fluctuated during the cell cycle and in response to drugs that perturbed cell cycle progression, including hydroxyurea and nocodazole. Additionally, we detected a SUMOylation-independent association between TDG and RNF4 in vitro as well as in vivo, and observed that both forms of TDG were efficiently degraded in RNF4-depleted cells when arrested at S phase. Our findings provide insights into the in vivo dynamics of TDG SUMOylation and further clarify the TDG–RNF4 interaction.  相似文献   

10.
11.
12.
Proteins belonging to the highly conserved RecQ helicase family are essential for the maintenance of genomic stability. Here, we describe the biochemical properties of the human RECQ5beta protein. Like BLM and WRN, RECQ5beta is an ATP-dependent 3'-5' DNA helicase that can promote migration of Holliday junctions. However, RECQ5beta required the single-stranded DNA-binding protein RPA in order to mediate the efficient unwinding of oligonucleotide-based substrates. Surprisingly, we found that RECQ5beta possesses an intrinsic DNA strand-annealing activity that is inhibited by RPA. Analysis of deletion variants of RECQ5beta revealed that the DNA helicase activity resides in the conserved N-terminal portion of the protein, whereas strand annealing is mediated by the unique C-terminal domain. Moreover, the strand-annealing activity of RECQ5beta was strongly inhibited by ATPgammaS, a poorly hydrolyzable analog of ATP. This effect was alleviated by mutations in the ATP-binding motif of RECQ5beta, indicating that the ATP-bound form of the protein cannot promote strand annealing. This is the first demonstration of a DNA helicase with an intrinsic DNA strand-annealing function residing in a separate domain.  相似文献   

13.
14.

Background

RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells.

Methods

The conserved lysine residues in each or both of dsRBDs were substituted by alanine in the context of full-length RNA helicase A. The mutant RNA helicase A was purified from mammalian cells. The effects of these mutations were assessed either in vitro upon RNA binding and unwinding or in the cell during HIV-1 production upon RNA helicase A–RNA interaction and RNA helicase A-stimulated viral RNA processes.

Results

Unexpectedly, the substitution of the lysine residues by alanine in either or both of dsRBDs does not prevent purified full-length RNA helicase A from binding and unwinding duplex RNA in vitro. However, these mutations efficiently inhibit RNA helicase A-stimulated HIV-1 RNA metabolism including the accumulation of viral mRNA and tRNALys3 annealing to viral RNA. Furthermore, these mutations do not prevent RNA helicase A from binding to HIV-1 RNA in vitro as well, but dramatically reduce RNA helicase A–HIV-1 RNA interaction in the cells.

Conclusions

The conserved lysine residues of dsRBDs play critical roles in the promotion of HIV-1 production by RNA helicase A.

General significance

The conserved lysine residues of dsRBDs are key to the interaction of RNA helicase A with substrate RNA in the cell, but not in vitro.  相似文献   

15.
Abstract

Electron holes are known to migrate along the DNA or RNA duplexes and to localize preferentially on successive guanines. The stationary point conformations of Gua pairs that can trap or let pass these holes have been characterized by quantum chemistry calculations. Here we show their recurrent occurrence in DNA and RNA X-ray structures, often in quadruplex conformations or in interaction with proteins, ligands or metal ions. These findings give support to the biological, possibly regulatory, roles of charge migration in cell functioning.  相似文献   

16.
Yeast SUV3 is a nuclear encoded mitochondrial RNA helicase that complexes with an exoribonuclease, DSS1, to function as an RNA degradosome. Inactivation of SUV3 leads to mitochondrial dysfunctions, such as respiratory deficiency; accumulation of aberrant RNA species, including excised group I introns; and loss of mitochondrial DNA (mtDNA). Although intron toxicity has long been speculated to be the major reason for the observed phenotypes, direct evidence to support or refute this theory is lacking. Moreover, it remains unknown whether SUV3 plays a direct role in mtDNA maintenance independently of its degradosome activity. In this paper, we address these questions by employing an inducible knockdown system in Saccharomyces cerevisiae with either normal or intronless mtDNA background. Expressing mutants defective in ATPase (K245A) or RNA binding activities (V272L or ΔCC, which carries an 8-amino acid deletion at the C-terminal conserved region) resulted in not only respiratory deficiencies but also loss of mtDNA under normal mtDNA background. Surprisingly, V272L, but not other mutants, can rescue the said deficiencies under intronless background. These results provide genetic evidence supporting the notion that the functional requirements of SUV3 for degradosome activity and maintenance of mtDNA stability are separable. Furthermore, V272L mutants and wild-type SUV3 associated with an active mtDNA replication origin and facilitated mtDNA replication, whereas K245A and ΔCC failed to support mtDNA replication. These results indicate a direct role of SUV3 in maintaining mitochondrial genome stability that is independent of intron turnover but requires the intact ATPase activity and the CC conserved region.  相似文献   

17.
We have previously described in rat liver two protein kinases tightly bound to DNA, one is serine-specific, the other arginine-specific. In this work we show that both enzymes are present in various rat tissues and in liver from various species. Both kinase specific activities are strongly decreased in methyl-DBA-induced hepatomas and in HTC cells but not in regenerating liver after hepatectomy. This decrease is then not related to cell proliferation.  相似文献   

18.
A rapidly labelled RNA associated with DNA in HeLa cells   总被引:2,自引:0,他引:2  
  相似文献   

19.
Mcm10 is essential for chromosome replication in eukaryotic cells and was previously thought to link the Mcm2-7 DNA helicase at replication forks to DNA polymerase alpha. Here, we show that yeast Mcm10 interacts preferentially with the fraction of the Mcm2-7 helicase that is loaded in an inactive form at origins of DNA replication, suggesting a role for Mcm10 during the initiation of chromosome replication, but Mcm10 is not a stable component of the replisome subsequently. Studies with budding yeast and human cells indicated that Mcm10 chaperones the catalytic subunit of polymerase alpha and preserves its stability. We used a novel degron allele to inactivate Mcm10 efficiently and this blocked the initiation of chromosome replication without causing degradation of DNA polymerase alpha. Strikingly, the other essential helicase subunits Cdc45 and GINS were still recruited to Mcm2-7 when cells entered S-phase without Mcm10, but origin unwinding was blocked. These findings indicate that Mcm10 is required for a novel step during activation of the Cdc45-MCM-GINS helicase at DNA replication origins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号