首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
The cyclic AMP-phosphodiesterase (EC 3.1.4.17) of buffalo spermatozoa is distributed in the head, mid-piece and tail fractions and has multiple forms, 70% of which is in the bound form. The bound enzyme was not solubilized by Triton X-100, lubrol or hyamine 2389. Kinetic measurements of the soluble enzyme showed two apparent Km values for low and high cAMP concentrations, i.e. 4.5 and 100 micro M with Vmax values of 0.25 and 2.0 nmol cAMP hydrolysed min-1 mg protein-1. The bound enzyme had an apparent Km of 66.6 microM with a Vmax of 0.75 nmol cAMP hydrolysed min-1 mg protein-1. The pH for optimum enzyme activity was 7.5 and Mg2+ was essential for the activity of the soluble and bound enzymes. Methylxanthines, ATP, ADP and ppi inhibited the soluble and bound enzymes, ATP being the most potent inhibitor.  相似文献   

2.
A Matsuno-Yagi  Y Hatefi 《Biochemistry》1989,28(10):4367-4374
Previous studies from this laboratory have shown that the kinetics of ATP synthesis by bovine heart submitochondrial particles (SMP) are modulated by the coupled rate of respiration between two extremes of Vmax and apparent Km's for ADP and Pi [Matsuno-Yagi, A., & Hatefi, Y. (1986) J. Biol. Chem. 261, 14031-14038; Hekman, C., Matsuno-Yagi, A., & Hatefi, Y. (1988) Biochemistry 27, 7559-7565]. Thus, with ADP as the variable substrate, ATP synthesis occurred with Vmax = 200 nmol of ATP min-1 (mg of protein)-1 at 30 degrees C and an apparent KmADP = 2-4 microM at low rates of respiration, and with Vmax = 11,000 nmol of ATP min-1 (mg of protein)-1 at 30 degrees C and an apparent KmADP = 120-160 microM at high rates of respiration. At intermediate respiration rates, it was necessary to introduce a third intermediate KmADP for best fit of the kinetic data, indicating that transition from one kinetic extreme to the other is not abrupt and involves intermediate kinetic states of the ATP synthase complexes. The present paper shows that uncouplers affect the kinetics of ATP synthesis by SMP in two ways. When used at moderate concentrations, electrogenic ionophores such as gramicidin D or valinomycin plus nigericin decreased the Vmax for ATP synthesis without changing the contributions of the low, intermediate, and high KmADP to the overall rate of ATP synthesis. By contrast, potent lipophilic weak acid uncouplers, such as FCCP, CCCP, S-13, and SF6847, decreased Vmax and converted the kinetics of ATP synthesis toward high KmADP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ca2+-dependent ATPases in the basolateral membrane of rat kidney cortex   总被引:1,自引:0,他引:1  
The basolateral segment of the rat renal tubular plasma membrane possesses Ca2+-dependent ATPase activity which was independent of Mg2+. Two kinetic forms were found: one, was a high affinity (apparent Km for free Ca2+ of 172 nM) low capacity (Vmax of 144 nmol of Pi X min-1 mg-1 protein) type; the other, had low affinity (apparent Km of 25 microM) and high capacity (896 nmol of Pi X min-1 X mg-1 protein). Mg2+ inhibited both Ca2+-ATPases. The high affinity enzyme exhibited positive cooperativity with respect to ATP, with a n value of 1.6. Ca2+-ATPase activity was not affected by calmodulin and was not inhibited by vanadate. On the other hand, both high and low affinity Ca2+-ATPase activities were increased when 1,25-dihydroxycholecalciferol was given to vitamin D-deficient rats. Kinetically, the enhanced activities were due to an increase in the Vmax values; the apparent affinities for free Ca2+ were not changed. The physiological function of the vitamin D-sensitive, Mg+-independent, Ca2+-ATPase activities remains to be established.  相似文献   

4.
G Brandolin  I Marty  P V Vignais 《Biochemistry》1990,29(41):9720-9727
A rapid filtration technique has been used to measure at room temperature the kinetics of ADP and ATP transport in rat heart mitochondria in the millisecond time range. Transport was stopped by cessation of the nucleotide supply, without the use of a transport inhibitor, thus avoiding any quenching delay. The mitochondria were preincubated for 30 s either in isotonic KCl containing succinate, MgCl2, and Pi (medium P) or in isotonic KCl supplemented only with EDTA and Tris (medium K); they were referred to as energized and resting mitochondria, respectively. The kinetics of [14C]ADP transport in energized mitochondria were apparently monophasic. The plateau value for [14C]ADP uptake reached 4-5 nmol of nucleotide.(mg of protein)-1. Vmax values for [14C]ADP transport of 400-450 nmol exchanged.min-1.(mg of protein)-1 with Km values of the order of 13-15 microM were calculated, consistent with rates of phosphorylation in the presence of succinate of 320-400 nmol of ATP formed.min-1.(mg of protein)-1. The rate of transport of [14C]ATP in energized mitochondria was 5-10 times lower than that of [14C]ADP. Upon uncoupling, the rate of [14C]ATP uptake was enhanced, and that of [14C]ADP uptake was decreased. However, the two rates did not equalize, indicating that transport was not exclusively electrogenic. Transport of [14C]ADP and [14C]ATP by resting mitochondria followed biphasic kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The process of ATP or GTP synthesis by bovine heart submitochondrial particles involves the binding of ADP or GDP to 3 exchangeable sites I, II, and III, and only upon substrate occupation of site III does rapid ATP or GTP synthesis take place. The dissociation constants determined for ADP were KADPI less than or equal to 10(-8) M, KADPII approximately 10(-7) M, and KADPIII (equivalent to apparent KADPm), approximately 3 x 10(-6) M in the low Km mode and KADPIII approximately 150 x 10(-6) M in the high Km mode. For GDP, these constants were KGDPI approximately 10(-6)-10(-5) M, KGDPII approximately 10(-4) M, and KGDPIII approximately 10(-3) M when NADH was the respiratory substrate (Matsuno-Yagi, A., and Hatefi, Y. (1990) J. Biol. Chem. 265, 82-88). Because of its low affinity for the above binding sites, GDP at micromolar concentrations does not lead to GTP synthesis. However, as shown in this paper, micromolar [GDP] undergoes phosphorylation in the presence of micromolar concentrations of ADP. Under these conditions, both ATP and GTP are synthesized. GDP inhibits ATP synthesis with KGDPi congruent to 7 microM, while ADP promotes GTP synthesis in a reaction that requires inorganic phosphate (apparent KPim = 2-3 mM) and is inhibited by uncouplers and inhibitors of the ATP synthase complex. The ADP-promoted GTP synthesis exhibited an "apparent" KGDPm = 4 microM and an "apparent" Vmax = 11 nmol of GTP (min.mg of protein)-1. These results were interpreted to mean that (a) micromolar [ADP] occupies sites I and II, allowing site III to bind and phosphorylate GDP, and (b) the KGDPm and Vmax calculated under these conditions represent values for the low Km-low Vmax mode of GTP synthesis, which in the absence of ADP is not detectable because of the positive cooperativity phase of GTP synthesis with the high KGDPII approximately 10(-4) M.  相似文献   

6.
Oxidative phosphorylation catalyzed by bovine heart submitochondrial particles appears to exhibit negative cooperativity with respect to [ADP] and positive cooperativity in catalysis. Eadie-Hofstee plots (v/[S]versus v) of the kinetics of oxidative phosphorylation at the variable ADP concentration range of 1-1200 microM were curvilinear and could be analyzed for two apparent KmADP values differing by one order of magnitude, and two apparent Vmax values. The KmADP values with either NADH or succinate as the respiratory substrate were in the ranges of 10 and 100 microM, and the Vmax values in nmol of ATP formed X min-1 (mg of protein)-1 were, respectively, 500 and 1840 when NADH was the oxidizable substrate, and 550 and 100 when succinate was the energy source. Site-site cooperativity of the ATP synthase, which is a central feature of current theories for the mechanism of oxidative phosphorylation, has been well-documented for ATP hydrolysis by isolated F1-ATPase, but never before demonstrated for mitochondrial ATP synthesis.  相似文献   

7.
In mitochondria and submitochondrial particles (SMP), the rate of ATP synthesis is restricted by the rate of energy production by the respiratory chain. Fractional inactivation of the ATP synthase complexes (F0F1) of bovine heart SMP by covalent modifiers increased the rate of ATP synthesis per mole of active F0F1. Thus, by use of SMP containing fractionally inactivated F0F1 complexes, a synthetic rate of 420 mol of ATP (mol of F0F1.s)-1 was measured, which extrapolated to a Vmax of 440 s-1. At this extrapolated point, the turnover rate of F0F1 complexes was independent of the rate of energy production by the respiratory chain. These results have been discussed in relation to the effect of fractional inactivation of the F0F1 complexes of SMP on the steady-state free energy of the system. The above rate of ATP synthesis is comparable to the rate of ATP hydrolysis by SMP (400-520 s-1) in the absence of energy coupling constraints and control by the ATPase inhibitor protein. More interestingly, this rate is also comparable to the rate of ATP synthesis by chloroplast F0F1 under high light intensity (approximately 420 s-1). Under the conditions specified, bovine heart SMP and chloroplasts show similar apparent Km values for ADP. Thus, it appears that the mammalian and chloroplast ATP synthase complexes are similar not only in structure but also in catalytic efficiency for ATP synthesis.  相似文献   

8.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

9.
Membrane vesicles prepared from tetracycline-sensitive cells of Pseudomonas putida took up tetracycline by an active transport system with an apparent Km of 2.5 mM and a Vmax of 50 nmol min-1 mg protein-1. In contrast, resistance determinant RP4-containing P. putida had an active high-affinity efflux system for tetracycline with a Km of 2.0 to 3.54 microM and a Vmax of 0.15 nmol min-1 mg protein-1. Thus, the efflux system of tetracycline-resistant P. putida(RP4) had an average of 1,000-fold greater affinity for tetracycline than the influx system of tetracycline-sensitive cells. From these results, it is clear that a major mechanism of tetracycline resistance in RP4-containing P. putida is an active tetracycline efflux mechanism. There was also evidence for a second tetracycline efflux system with low affinity for tetracycline n P. putida(RP4). This efflux system had a Km of 0.25 mM and a Vmax of 1.45 nmol min-1 protein-1. Whether this low-affinity efflux system was also present in tetracycline-sensitive P. putida could not be discerned from these experiments.  相似文献   

10.
Inorganic phosphate (Pi) transport by wild-type cells of Escherichia coli grown in excess phosphate-containing media involves two genetically separable transport systems. Cells dependent upon the high affinity-low velocity Pst (phosphate specific transport) system have a Km of 0.43 +/- 0.2 microM Pi and a Vmax of 15.9 +/- 0.3 nmol of Pi (mg [dry weight]-1min-1) and will grow in the presence of arsenate in the medium. However, cells dependent upon the low affinity-high velocity Pit (Pi transport) system have a Km of 38.2 +/- 0.4 microM and a Vmax of 55 +/- 1.9 nmol of Pi (mg [dry weight]-1min-1), and these cells cannot grow in the presence of an arsenate-to-Pi ratio of 10 in the medium. Pi transport by both systems was sensitive to the energy uncoupler 2,4-dinitrophenol and the sulfhydryl reagent N-ethylmaleimide, whereas only the Pst system was very sensitive to sodium cyanide. Evidence is presented that Pi is transported as Pi or a very labile intermediate and that accumulated Pi does not exit through the Pst or Pit systems from glucose-grown cells. Kinetic analysis of Pi transport in the wild-type strain containing both the Pst and Pit transport systems revealed that each system was not operating at full capacity. In addition, Pi transport in the wild-type strain was completely sensitive to sodium cyanide (a characteristic of the Pst system).  相似文献   

11.
Coupling of ATP synthesis to reversal of rat liver microsomal Ca2+-ATPase   总被引:1,自引:0,他引:1  
W W Webb  M W Anders 《Biochemistry》1985,24(26):7741-7745
The reversal of the rat liver microsomal Ca2+-ATPase transport cycle was studied. Microsomes were loaded with 45Ca2+ (approximately 30 nmol/mg of protein) in an ATP-dependent process, and the time dependency of the microsomal 45Ca2+ efflux was determined with various ADP and inorganic phosphate (Pi) concentrations. Pseudo-first-order rate constants (K'e) for 45Ca2+ efflux were determined. Although there was considerable 45Ca2+ efflux in the absence of added ADP or Pi, the addition of ADP or Pi alone had minimal effects upon the K'e; in contrast, a 2.5-fold increase in the K'e was observed in the presence of both ADP and Pi. The apparent Km values for ADP and Pi were 4 microM and 0.22 mM, respectively. Stimulation of 45Ca2+ efflux by ADP and Pi was associated with ATP synthesis. The calcium ionophore A23187 prevented ATP synthesis, which indicates that the Ca2+ gradient facilitates the coupling of ATP synthesis to Ca2+ efflux.  相似文献   

12.
C Hekman  A Matsuno-Yagi  Y Hatefi 《Biochemistry》1988,27(19):7559-7565
The kinetics of ATP synthesis by bovine heart submitochondrial particles (SMP) are modulated by the rate of energy production by the respiratory chain between two fixed limits characterized by apparent KmADP = 2-4 microM and Vmax approximately 200 nmol of ATP min-1 (mg of SMP protein)-1 at low energy levels and apparent KmADP = 120-160 microM and Vmax = 11,000 nmol of ATP min-1 (mg of SMP protein)-1 at high energy levels. These data indicate that KmADP and Vmax increase approximately 50-fold each; therefore, there is essentially no change in the catalytic efficiency of the ATP synthase complex in going from one extreme to the other. At intermediate rates of energy production, the kinetic data required introduction of a third, intermediate KmADP. A KmADP of 10-15 microM fitted all the data reported here and previously [Matsuno-Yagi, A., & Hatefi, Y. (1986) J. Biol. Chem. 261, 14031-14038]. However, this is not meant to suggest that there is a fixed intermediate KmADP, as the transition from one fixed limit to the other may be fluid or involve more than one intermediate state. In addition, it has been shown that kinetic plots of SMP-catalyzed and ATP-driven reverse electron transfer from succinate to NAD are curvilinear and resolvable into a minimum of two apparent KmNAD values of about 20-30 and 200-300 microM. These results have been discussed in relation to the three potentially active catalytic sites of F1-ATPase and the structure of the NADH:ubiquinone oxidoreductase complex, the curvilinear kinetics of ATP hydrolysis, and changes in KmADP and KmPi in photophosphorylation as affected by the duration and intensity of light.  相似文献   

13.
Three ATP-dependent reactions catalyzed by the inner membrane of rat liver mitochondria and the ATPase reaction catalyzed by purified mitochondrial ATPase (F1), were studied with respect to kinetic properties, substrates specificity, and sensitivity to bicarbonate. The ATP-dependent transhydrogenase reaction (reduction of NADP+ by NADH) catalyzed by inner membrane vesicles displays typical Michaelis-Menten kinetics in both Tris-Cl and Tris-bicarbonate buffers, with Km (ATP) values of 0.035 mM and 0.054 mM respectively. The Vmax of transhydrogenase activity (25 nmol min-1 mg-1) is the same in Tris-bicarbonate or Tris-Cl buffer. ITP and GTP readily substitute for ATP in the transhydrogenase reaction. The ATP-P1 exchange reaction catalyzed by inner membrane vesicles displays typical Michaelis-Menten kinetics in both Tris-Cl and Tris-bicarbonate buffers with Km (ATP) values of 1.0 mM and 1.4 mM respectively. The Vmax of exchange (200 nmol min-1 mg-1) is the same in either buffer. ITP and GTP do not effectively replace ATP in the exchange reaction.  相似文献   

14.
PPi driven ATP synthesis has been reconstituted in a liposomal system containing the membrane-bound energy-linked PPiase and coupling factor complex, both highly purified from Rhodospirillum rubrum. This energy converting model system was made by mixing both enzyme preparations with an aqueous suspension of sonicated soybean phospholipids and subjecting to a freeze-thaw procedure. In the presence of ADP, Mg2+, Pi and PPi the system catalyzed phosphorylation by up to 25 nmol ATP formed X mg protein-1 X min-1, at 20 degrees C, which was sensitive to uncouplers and inhibitors of phosphorylation such as oligomycin, efrapeptin and N,N'-dicyclohexylcarbodiimide.  相似文献   

15.
FliI is a key component of the flagellar export apparatus in Salmonella typhimurium. It catalyzes the hydrolysis of ATP which is necessary for flagellar assembly. Affinity blotting experiments showed that purified flagellin and hook protein, two flagellar axial proteins, interact specifically with FliI. The interaction of either of the two proteins with FliI, increases the intrinsic ATPase activity. The presence of either flagellin or hook protein stimulates ATPase activity in a specific and reversible manner. A Vmax of 0.12 nmol Pi min-1 microgram-1 and a Km for MgATP of 0.35 mM was determined for the unstimulated FliI; the presence of flagellin increased the Vmax to 0.35 nmol Pi min-1 microgram-1 and the Km for MgATP to 1.1 mM. The stimulation induced by the axial proteins was fully reversible suggesting a direct link between the catalytic activity of FliI and the export process.  相似文献   

16.
Phosphate-phosphate exchange through the inorganic phosphate (Pi) carrier of rat liver mitochondria was investigated by a new rapid filtration technique, which does not require the use of transport inhibitors to stop the reaction and offers high time resolution (starting from 10 ms), thus allowing kinetic measurements on a fine time scale even at room temperature. At approximately 22 degrees C, isotopic equilibrium of [32P]Pi is achieved within 0.8-2.5 s--depending on the Pi concentration--and an initial linear phase, lasting for 400-500 ms, is observed. Complete inhibition of Pi exchange by an excess (33 nmol/mg) of mersalyl, a well-known organomercurial inhibitor, required 200 ms, pointing to the insufficiency of this reagent for effective inhibitor stop. On the other hand, investigation of the effect of mersalyl (allowed to react with mitochondria for at least 20 s) on the initial rate of Pi exchange supports earlier observations on the protective effect of this inhibitor; i.e., up to 3 nmol of mersalyl/mg of protein does not decrease the transport rate whereas these low concentrations protect approximately 50% of the transport capacity from irreversible inactivation by N-ethylmaleimide. In nonrespiring mitochondria, at pH 7.3, Pi exchange exhibited a Km of 1.6 mM and a Vmax of 3.0 mumol min-1 (mg of mitochondrial protein)-1. The increase of the membrane potential without any concomitant change of delta pH had no significant influence on the kinetic parameters. The maximal velocity of Pi transport is significantly higher than the maximal velocity of all the other components of oxidative phosphorylation at comparable temperatures. The possible physiological significance of this excess capacity is discussed.  相似文献   

17.
An alpha beta heterodimer of the F1-ATPase of Rhodospirillum rubrum was isolated by extraction of chromatophores with LiCl. Each alpha beta heterodimer contains one tightly bound ADP, which is released upon removal of medium Mg2+. The dimer can be reversibly dissociated by removal of Mg(2+)-ions. The alpha beta heterodimer restores both ATP-synthetic and -hydrolytic activities to LiCl-treated chromatophores, saturation being achieved at approximately 2 mmol alpha beta.mol BChl-1. The heterodimer itself hydrolyses Mg-ATP with an activity distinct from RF1, being unaffected by azide or sulphite ions. The Vmax and Km (ATP) for this Mg(2+)-dependent activity were 110 +/- 10 nmol.min-1.mg protein-1 and 100 +/- 30 microM, respectively. The Km did not differ significantly from that of RF1.  相似文献   

18.
Several lines of evidence show a close association between plasma membrane Na,K-ATPase and mitochondrial respiration. Extending the observation in human erythrocyte membrane (6), Na,K-ATPase activity has been shown to be elevated in kidney microsomal preparations from protein- and energy-malnourished rats (10). Kidney mitochondrial respiration was studied in these rats under various conditions of assay. Sucrose was used as a modifier of mitochondrial morphology and volume to study its effect on these mitochondria. Mitochondrial state 3 respiration was increased by 35% in protein-deficient rats (P less than 0.02). Vmax(ADP) of state 3 respiration was increased by about 47% in protein- as well as energy-restricted rats. Mitochondria from protein- and energy-deficient rats were more tightly coupled as compared to those from control group. Km apparent for (ADP) and (Pi) were elevated in protein- and energy-malnourished rats. The magnitude of increase was much more in energy-deficient rats. Morphological differences between the mitochondria from two dietary manipulations were reflected in differences in the responses of state 3 respiration, Km(ADP), state 4 respiration, and respiratory control ratios to changing sucrose concentrations. This increase in mitochondrial respiration parallels the increased Na,K-ATPase activity in these rats. Increased Km (ADP and Pi) for mitochondrial respiration are perhaps in response to increased availability of these metabolites in the cytosol. The sucrose effect, in addition, distinguishes the morphological differences in mitochondrial membrane due to protein or energy deficiencies. In conclusion, these results, to a great extent, support an association between the activity of Na,K-ATPase and mitochondrial respiration. The study of mechanism(s) which could contribute to the enhancement of mitochondrial respiration will be of general importance to the understanding of regulation of mitochondrial oxidative phosphorylation, and is of particular interest to us.  相似文献   

19.
Purified rat brain microvessels were prepared to demonstrate the occurrence of acyl-CoA (EC 6.2.1.3) synthesis activity in the microvasculature of rat brain. Both arachidonoyl-CoA and palmitoyl-CoA synthesis activities showed an absolute requirement for ATP and CoA. This activity was strongly enhanced by magnesium chloride and inhibited by EDTA. The apparent Km values for acyl-CoA synthesis by purified rat brain microvessels were 4.0 microM and 5.8 microM for palmitic acid and arachidonic acid, respectively. The apparent Vmax values were 1.0 and 1.5 nmol X min-1 X mg protein-1 for palmitic acid and arachidonic acid, respectively. Cross-competition experiments showed inhibition of radiolabelled arachidonoyl-CoA formation by 15 microM unlabelled arachidonic acid, with a Ki of 7.1 microM, as well as by unlabelled docosahexaenoic acid, with a Ki of 8.0 microM. Unlabelled palmitic acid and arachidic acid had no inhibitory effect on arachidonoyl-CoA synthesis. In comparison, radiolabelled palmitoyl-CoA formation was inhibited competitively by 15 microM unlabelled palmitic acid, with a Ki of 5.0 microM and to a much lesser extent by arachidonic acid (Ki, 23 microM). The Vmax of palmitoyl-CoA formation obtained on incubation in the presence of the latter fatty acids was not changed. Unlabelled arachidic acid and docosahexaenoic acid had no inhibitory effect on palmitoyl-CoA synthesis. Both arachidonoyl-CoA and palmitoyl-CoA synthesis activities were thermolabile. Arachidonoyl-CoA formation was inhibited by 75% after 7 min at 40 degrees C whereas a 3-min heating treatment was sufficient to produce the same relative inhibition of palmitoyl-CoA synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Analyses of isolated intact diaphragm muscle show that at rest only about 30% of the total cellular Pi is metabolically reactive as indicated by 18O incorporation from [18O]water, whereas up to 90% becomes metabolically active incrementally with contractile frequency. Kinetics of [gamma-18O]ATP appearance show that about 90% of the cellular ATP is metabolically active and suggest slowly and rapidly metabolizing compartments of ATP in resting muscle and only rapidly metabolizing compartments in contracting muscle. Rates of [18O]creatine phosphate [( 18O]CrP) appearance are consistent with creatine kinase-catalyzed phosphoryl exchange functioning in an obligatory phosphoryl shuttle system. In noncontracting muscle, ATP turnover rate was 83 nmol.mg protein-1.min-1, and the P/O ratio was determined to be 3.2. ATP utilization increases in direct proportion to contractile frequency with each contracture consuming the equivalent of 0.96 nmol of ATP.mg protein-1 or 2.5-3.5 molecules of ATP/myosin active site. Basal concentrations of nucleotide polyphosphates are not altered when ATP utilization rates increase during contraction. At high contractile frequencies, decreases in CrP concentration occur, but this accounts for less than 4% of total high energy phosphoryls consumed. If metabolic intermediates are free in the aqueous cellular cytosol, each twitch contracture would result in a decrease in ATP concentration of no more than 2% and increases in ADP and AMP concentrations of less than 20 and 7%, respectively. Thus, changes in metabolite concentration must be highly localized or metabolic regulation can be accomplished by a nonallosteric mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号