首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The influence of solar UV-A and UV-B radiation at Beltsville, Maryland, on growth and flavonoid content in four cultivars of Cucumis sativus L. (Ashley, Poinsett, Marketmore, and Salad Bush cucumber) was examined during the summers of 1994 and 1995. Plants were grown from seed in UV exclusion chambers consisting of UV-transmitting Plexiglas, lined with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or cellulose acetate to transmit UV-A and UV-B. Despite previously determined differences in sensitivity to supplemental UV-B radiation, all four cultivars responded similarly to UV-B exclusion treatment. After 19–21 days, the four cultivars grown in the absence of solar UV-B (polyester) had an average of 34, 55, and 40% greater biomass of leaves, stems, and roots, respectively, 27% greater stem height, and 35% greater leaf area than those grown under ambient UV-B (cellulose acetate). Plants protected from UV-A radiation as well (Llumar) showed an additional 14 and 22% average increase, respectively, in biomass of leaves and stems, and a 22 and 19% average increase, respectively, in stem elongation and leaf area over those grown under polyester. These findings demonstrate the extreme sensitivity of cucumber not only to present levels of UV-B but also to UV-A and suggest that even small changes in ozone depletion may have important biological consequences for certain plant species.  相似文献   

2.
Hypocotyl elongation responses to ultraviolet-B (UV-B) radiation were investigated in glasshouse studies of de-etiolated seedlings of a long-hypocotyl mutant ( lh ) of cucumber ( Cucumis sativus L.) deficient in stable phytochrome, its near isogenic wild type (WT), and a commercial cucumber hybrid (cv. Burpless). A single 6- or 8-h exposure to UV-B applied against a background of white light inhibited hypocotyl elongation rate by ca 50% in lh and WT seedlings. This effect was not accompanied by a reduction in cotyledon area expansion or dry matter accumulation. Plants recovered rapidly from inhibition and it was possible to stimulate hypocotyl elongation in plants exposed to UV-B by application of gibberellic acid. In all genotypes inhibition of elongation was mainly a consequence of UV-B perceived by the cotyledons; covering the apex and hypocotyl with a filter that excluded UV-B failed to prevent inhibition. These results indicate that reduced elongation does not result from assimilate limitation or direct damage to the apical meristem or elongating cells, and strongly suggest that it is a true photomorphogenic response to UV-B. The fact that UV-B fluences used were very low in relation to total visible light, and the similarity in the responses of lh and wild-type plants, are consistent with the hypothesis that UV-B acts through a specific photoreceptor. It is argued that, given the weak correlation between UV-B and visible-light levels in most natural conditions, the UV-B receptor may play an important sensory function providing information to the plant that cannot be derived from light signals perceived by phytochrome or blue/UV-A sensors.  相似文献   

3.
A growth analysis was made of ultraviolet-B (UV-B)-sensitive (Poinsett) and insensitive (Ashley) cultivars of Cucuumis satives L. grown in growth chambers at 600 μmol m−2 s−1 of photosynthetic photon flux (PPF) provided by red- and far-red-deficient metal halide (MH) or blue- and UV-A-deficient high pressure sodium/deluxe f HPS/DX) lamps. Plants were irradiated 6 h daiiy with 0.2 f-UV-B) or 18.2 C+UV-B) kJ m−2 day−1 of biologically effective UV-B for 8 or 15 days from time of seeding. In general, plants given supplemental UV-B for 15 days showed lower leaf area ratio (LARs, and higher specific leaf mass (SLM) mean relative growth rate (MRGR) and net assimilation rate (NAR) than that of control plants, but they showed no difference in leaf mass ratio (LMR), Plants grown under HPS/DX lamps vs MH lamps showed higher SLM and NAR. lower LAR and LMR. hut no difference in MRGR. LMR was the only growth parameter affected by cultivar: at 15 days, it was slightly greater in Poinsett than in Ashley. There were no interactive effects of UV-B. PPF source or cultivar on any of the growth parameters determined, indicating that the choice of either HPS/DX or MH lamps should not affect growth response to UV-B radiation. This was true even though leaves of UV-B-irradiated plants grown under HPS/DX lamps have been shown to have greater chlorosis than those grown under MH lamps.  相似文献   

4.
The present study was undertaken in order to investigate the suitability of certain markers for UV plant response. In addition, we attempted to link the internal tissue distribution of specific UV-absorbing compounds to profiles of radiation gradients within intact primary rye leaves ( Secale cereale L. cv. Kustro). Etiolated rye seedlings irradiated with low visible light (LL) and/or UV radiation were used to study enzyme activities of the two key enzymes, phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), together with the tissue-specific accumulation of soluble phenylpropanoid products. Plants grown under relatively high visible light (HL) with or without supplementary UV-B radiation were used for further characterization. Apparent quantum yield and fluorescence quenching parameters were monitored to assess potential physiological changes due to UV-B exposure in HL-grown seedlings. A quartz fibreoptic microprobe was used to characterize the internal UV-B gradient of the leaf. The response of the phenylpropanoid metabolism to UV radiation was similar in primary leaves of both etiolated and HL-treated green plants. The epidermis-specific flavonoids together with CHS activity turned out to be suitable markers for assessing the effect of UV on the phenolic metabolism. The functional role of phenylpropanoid compounds was strongly implicated in protecting rye from UV-B radiation.  相似文献   

5.
Excision of a growing stem causes local wound responses, such as membrane depolarization and growth inhibition, as well as effects at larger distances from the cut. In this study, cucumber hypocotyls were excised 100mm below the hook, so that the growing region was beyond the reach of the wound-induced depolarization (up to 40mm). Even at such a distance, the cut still caused a considerable and rapid drop in the hypocotyl growth rate. This growth response is not a direct wound response because it does not result from the cut-induced depolarization and because it can be simulated by root pressure manipulation (using a pressure chamber). The results indicate that the growth response resulted from the rapid release of the xylem pressure upon excision. To test this conclusion we measured the xylem pressure by connecting a pressure probe to the cut surface of the stem. Xylem pressure (Px) was found to be +10 to +40kPa in cucumber hypocotyls and -5 to -10 kPa or lower in pea epicotyls. Excision of the cucumber hypocotyl base led to a rapid drop in Px to negative values, whereas excision in pea led to a rapid rise in Px to ambient (zero) pressure. These fast and opposite px changes parallel the excision-induced changes in growth rate (GR): a decrease in cucumber and a rise in pea. The sign of the endogenous xylem pressure also determined whether excision induced a propagating depolarization in the form of a slow wave potential (SWP). Under normal circumstances pea seedlings generated an SWP upon excision whereas cucumber seedlings failed to do so. When the Px in cucumber hypocotyls was experimentally inverted to negative values by incubating the cumber roots in solutions of NaCN or n-ethylmaleimide, excision caused a propagating depolarization (SWP). The experiment shows that only hydraulic signals in the form of positive Px steps are converted into propagating electric SWP signals. These propagating depolarizations might be causally linked to systemic ‘wound’ responses, which occur independently of the short-distance or direct wound responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号