首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Phanerochaete chrysosporium produces two classes of extracellular heme proteins, designated lignin peroxidases and manganese peroxidases, that play a key role in lignin degradation. In this study we isolated and characterized a lignin peroxidase-negative mutant (lip mutant) that showed 16% of the ligninolytic activity (14C-labeled synthetic lignin----14CO2) exhibited by the wild type. The lip mutant did not produce detectable levels of lignin peroxidase, whereas the wild type, under identical conditions, produced 96 U of lignin peroxidase per liter. Both the wild type and the mutant produced comparable levels of manganese peroxidase and glucose oxidase, a key H2O2-generating secondary metabolic enzyme in P. chrysosporium. Fast protein liquid chromatographic analysis of the concentrated extracellular fluid of the lip mutant confirmed that it produced only heme proteins with manganese peroxidase activity but no detectable lignin peroxidase activity, whereas both lignin peroxidase and manganese peroxidase activities were produced by the wild type. The lip mutant appears to be a regulatory mutant that is defective in the production of all the lignin peroxidases.  相似文献   

5.
6.
7.
Tognolli M  Penel C  Greppin H  Simon P 《Gene》2002,288(1-2):129-138
Higher plants possess a large set of the classical guaiacol peroxidases (class III peroxidases, E.C. 1.11.1.7). These enzymes have been implicated in a wide array of physiological processes such as H(2)O(2) detoxification, auxin catabolism and lignin biosynthesis and stress response (wounding, pathogen attack, etc.). During the last 10 years, molecular cloning has allowed the isolation and characterization of several genes encoding peroxidases in plants. The achievement of the large scale Arabidopsis genome sequencing, combined with the DNA complementary to RNA (cDNA) expressed sequence tags projects, provided the opportunity to draw up the first comprehensive list of peroxidases in a plant. By screening the available databases, we have identified 73 peroxidase genes throughout the Arabidopsis genome. The evolution of the peroxidase multigene family has been investigated by analyzing the gene structure (intron/exon) in correlation with the phylogenetic relationships between the isoperoxidases. An evolutionary pattern of extensive gene duplications can be inferred and is discussed. Using a cDNA array procedure, the expression pattern of 23 peroxidases was established in the different organs of the plant. All the tested peroxidases were expressed at various levels in roots, while several were also detected in stems, leaves and flowers. The specific functions of these genes remain to be determined.  相似文献   

8.
9.
10.
11.
Eosinophil peroxidase (EPX) is one of a family of mammalian peroxidases that includes myeloperoxidase (MPO), lactoperoxidase (LPO), and thyroid peroxidase (TPO). Here we show that the human EPX gene maps to chromosome 17q23.1, which localizes 34 kb from the LPO and MPO genes. Our results demonstrate that the EPX, LPO, and MPO genes form a cluster on human chromosome 17.  相似文献   

12.
通过对定位BAC克隆q3037(H0207F01)的序列测定和分析,在其中一个22.5kb的区域发现一个由5个第三类过氧化物酶基因(依次命名为osp1、osp2、osp3、osp4、osp5)组成的基因簇,分析表明,osp1、osp2和osp3分别含1个内含子,osp4和osp5分别含2个内含子。该5个基因分别编码338、335、336、343和346个氨基酸残基的蛋白质而且都具有N端信号肽序列,其中OSP1、OSP4、OSP5为表离子过氧化物酶,OSP2、OSP3为阳离子过氧化物酶。对5个基因间的两两比较分析和进化分析结果表明:该基因簇是通过一系列的串联基因复制事件而形成;osp5与来自玉米的ap1和来自大麦(Hordeum vulgar)的prx7为潜在的直向同源基因,而且,osp1-5与ap1、prx7构成了分泌性植物过氧化物酶基因家族中的一个的分枝。  相似文献   

13.
14.
15.
16.
17.
18.
利用RT-PCR方法分析了生长于冷杉木片上的黄孢原毛平革菌木质素过氧化物酶基因lipA2(GLG3)、lipC1(GLG2)、lipC2(GLG5)、lipD2(GLG1)、lipE(LPO811)的表达。结果发现在不同的培养时间里仅有特定的基因表达,在第2周时仅有lipA2(GLG3)基因表达,在第4周时未检测到任何基因的表达,在第6周时lipD2(GLG1)和lipC1(GLG2)基因表达,在第8周时仅有lipA2(GLG3)基因表达。这些结果说明,在冷杉木片上培养的黄孢原毛平革菌的lip基因表达具有明显的时间特异性,并且与限定培养基中得到的结果明显不同。  相似文献   

19.
20.
Lignin and Mn peroxidases are two families of isozymes produced by the lignin-degrading fungus Phanerochaete chrysosporium under nutrient nitrogen or carbon limitation. We purified to homogeneity the three major Mn peroxidase isozymes, H3 (pI = 4.9), H4 (pI = 4.5), and H5 (pI = 4.2). Amino-terminal sequencing of these isozymes demonstrates that they are encoded by different genes. We also analyzed the regulation of these isozymes in carbon- and nitrogen-limited cultures and found not only that the lignin and Mn peroxidases are differentially regulated but also that differential regulation occurs within the Mn peroxidase isozyme family. The isozyme profile and the time at which each isozyme appears in secondary metabolism differ in both nitrogen- and carbon-limited cultures. Each isozyme also responded differently to the addition of a putative inducer, divalent Mn. The stability of the Mn peroxidases in carbon- and nitrogen-limited cultures was also characterized after cycloheximide addition. The Mn peroxidases are more stable in carbon-limited cultures than in nitrogen-limited cultures. They are also more stable than the lignin peroxidases. These data collectively suggest that the Mn peroxidase isozymes serve different functions in lignin biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号