首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic relationships among 50 fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars from China and Japan were investigated, using 767 amplified fragment length polymorphism (AFLP) and 103 single nucleotide polymorphism (SNP) markers. The polymorphism among the cultivars was found to be 69.77%, based on EcoR I + Mse I AFLP primer pairs. The sequence alignment of 11 group sequences, derived from 50 samples, yielded 103 SNPs; the total length of genomic sequences was 3683 bp. Among these SNPs, 73 were heterozygous in the loci of different cultivars. The SNP distribution was 58% transition, 40% transversion, and 2% InDels. There was also 1 trinucleotide deletion. AFLP and SNP markers allowed us to evaluate the genetic diversity of these 50 fruiting-mei cultivars. The 2 derived cladograms did display some differences: all cultivars formed 2 subclusters (1A and 1B) in the cladogram based on AFLP polymorphisms, and formed 3 subclusters (2A, 2B, and 2C) in the cladogram based on SNP polymorphisms; and, in the cladogram based on AFLP polymorphisms, most cultivars from the Guangdong to Fujian provinces (G-F) in China, from the Yunnan, Hunan, and Sichuan provinces (Y-S-H) in China, and from Japan grouped in cluster 1A, and 18 (78.26%) of 23 cultivars from Jiangsu to Zhejiang provinces in China (J-Z) grouped in cluster 1B. The results demonstrate that mei cultivars from Japan are clustered with cultivars from China, and support the hypothesis that mei in Japan were introduced from China. Cultivars from the J-Z region of China have more genetic similarities. Cultivars from the G-F and Y-S-H regions have fewer genetic similarities and suggest more germplasm exchanges in the past.  相似文献   

2.
One of the current challenges of tropical fruit crop improvement is to incorporate molecular marker‐based approaches into conventional breeding programmes. This study was designed to build an integrated genetic map of the sweet passion fruit (Passiflora alata), a diploid (2n = 18) outcrossing species which is greatly appreciated for in natura consumption, and reported to inspire cosmetic and pharmaceutical companies to create plant‐derived compounds. With this in mind, a full‐sib family of 180 individuals was genotyped using different molecular marker types, such as amplified fragment length polymorphisms (AFLP), microsatellite‐AFLP (M‐AFLP), simple sequence repeats (SSR), resistance gene analogues (RGA) and target region amplification polymorphism (TRAP). On average, the rate of polymorphism between the parental genotypes was 20.3%. We also searched for single nucleotide polymorphisms (SNPs) in some AFLP bands and in seven gene fragments, and found one SNP every 87 bp. All SNPs were biallelic and occurred most frequently in putative gene fragments (81.5%) rather than in AFLP bands (60.0%) analyzed. Excellent gel profiles were obtained allowing the recognition of all types of segregation expected for a progeny of an outcrossing species. Multipoint linkage analysis was performed using OneMap software, with logarithm of the odds (LOD) score ≥ 5.6 and recombination fraction <0.5. The resulting integrated map consists of 549 markers, 2.0% of which fit a segregation ratio of 1:1:1:1, 1.3% a ratio of 1:2:1, 27.3% a ratio of 3:1 and 69.4% a ratio of 1:1. The map spanned a total of 2073.0 cM, with an average distance between adjacent markers of 3.8 cM. This is the first linkage study on sweet passion fruit and should prove useful for quantitative trait loci mapping.  相似文献   

3.
The genetic diversity and genetic relatedness of mei (Prunus mume; 2n = 16) were studied using amplified fragment length polymorphism (AFLP) markers. Eight EcoRI–PstI AFLP primer combinations were applied to 121 distinct genotypes of mei cultivars and related species. A total of 508 AFLP product bands were produced, of which 382 were polymorphic. The unweighted pair group method with arithmetic averages analysis was carried out based on these AFLP markers. From this analysis, “Qugeng Mei,” “Yan Mei,” “Chaodou Mei,” and mei cultivars were seen to share the same P. mume genetic stem. The AFLP data were able to clearly discriminate P. mume from other species in the genus Prunus, with P. armeniaca aligning as its closest related species. Two major groups and nine subgroups of mei flower were identified, and there was a strong coincidence of these AFLP-based groupings with the respective morphological characters of the accessions. The genetic diversity of mei accessions was greatest in the Yunnan Province and decreased toward Eastern China and Japan, so supporting the hypothesis that the southwest of China represents the genetic diversity center of the species.  相似文献   

4.
A new method for specific reamplification of DDRT-PCR products is presented. After transient ligation of the primary DDRT-PCR fragments into a T-vector, the cDNAs of interest were reamplified by hemi-nested PCR and thermally asymmetric cycles. In contrast to the originally described protocol, this method of reamplification is specific, sensitive, reproducibly gives a high yield of DNA and allows direct sequencing of the reamplified product without purification or cloning.  相似文献   

5.
Next-generation sequencing technologies provide opportunities to ascertain the genetic basis of phenotypic differences, even in the closely related cultivars via detection of large amount of DNA polymorphisms. In this study, we performed whole-genome re-sequencing of two mei cultivars with contrasting tree architecture. 75.87 million 100 bp pair-end reads were generated, with 92 % coverage of the genome. Re-sequencing data of two former upright mei cultivars were applied for detecting DNA polymorphisms, since we were more interested in variations conferring weeping trait. Applying stringent parameters, 157,317 mutual single nucleotide polymorphisms (SNPs) and 15,064 mutual insertions-deletions (InDels) were detected and found unevenly distributed within and among the mei chromosomes, which lead to the discovery of 220 high-density, 463 low-density SNP regions together with 80 high-density InDel regions. Additionally, 322 large-effect SNPs and 433 large-effect InDels were detected, and 10.09 % of the SNPs were observed in coding regions. 5.25 % SNPs in coding regions resulted in non-synonymous changes. Ninety SNPs were chosen randomly for validation using high-resolution melt analysis. 93.3 % of the candidate SNPs contained the predicted SNPs. Pfam analysis was further conducted to better understand SNP effects on gene functions. DNA polymorphisms of two known QTL loci conferring weeping trait and their functional effect were also analyzed thoroughly. This study highlights promising functional markers for molecular breeding and a whole-genome genetic basis of weeping trait in mei.  相似文献   

6.
7.
Genetic relationships were evaluated among nine cultivars ofBrassica campestris by employing random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers. RAPDs generated a total of 125 bands using 13 decamer primers (an average of 9.6 bands per assay) of which nearly 80% were polymorphic. The per cent polymorphism ranged from 60–100%. AFLP, on the other hand generated a total of 319 markers, an average of 64 bands per assay. Of these, 213 were polymorphic in nature (66.8%). AFLP methodology detected polymorphism more efficiently than RAPD approach due to a greater number of loci assayed per reaction. Cultivar-specific bands were identified, for some cultivars using RAPD, and for most cultivars with AFLP. Genetic similarity matrix, based on Jaccard’s index detected coefficients ranging from 0.42 to 0.73 for RAPD, and from 0.48 to 0.925 for AFLPs indicating a wide genetic base. Cluster analyses using data generated by both RAPD and AFLP markers, clearly separated the yellow seeded, self-compatible cultivars from the brown seeded, self-incompatible cultivars although AFLP markers were able to group the cultivars more accurately. The higher genetic variation detected by AFLP in comparison to RAPD was also reflected in the topography of the phenetic dendrograms obtained. These results have been discussed in light of other studies and the relative efficiency of the marker systems for germplasm evaluation.  相似文献   

8.
Conversion of AFLP bands into high-throughput DNA markers   总被引:10,自引:0,他引:10  
The conversion of AFLP bands into polymorphic sequence-tagged-site (STS) markers is necessary for high-throughput genotype scoring. Technical hurdles that must be overcome arise from genome complexity (particularly sequence duplication), from the low-molecular-weight nature of the AFLP bands and from the location of the polymorphism within the AFLP band. We generated six STS markers from ten AFLP bands (four AFLPs were from co-dominant pairs of bands) in soybean (Glycine max). The markers were all linked to one of two loci, rhg1 on linkage group G and Rhg4 on linkage group A2, that confer resistance to the soybean cyst nematode (Heterodera glycines I.). When the polymorphic AFLP band sequence contained a duplicated sequence or could not be converted to a locus-specific STS marker, direct sequencing of BAC clones anchored to a physical map generated locus-specific flanking sequences at the polymorphic locus. When the polymorphism was adjacent to the restriction site used in the AFLP analysis, single primer extension was performed to reconstruct the polymorphism. The six converted AFLP markers represented 996 bp of sequence from alleles of each of two cultivars and identified eight insertions or deletions, two microsatellites and eight single-nucleotide polymorphisms (SNPs). The polymorphic sequences were used to design a non-electrophoretic, fluorometric assay (based on the TaqMan technology) and/or develop electrophoretic STS markers for high-throughput genotype determination during marker-assisted breeding for resistance to cyst nematode. We conclude that the converted AFLP markers contained polymorphism at a 10- to 20-fold higher frequency than expected for adapted soybean cultivars and that the efficiency of AFLP band conversion to STS can be improved using BAC libraries and physical maps. The method provides an efficient tool for SNP and STS discovery suitable for marker-assisted breeding and genomics.  相似文献   

9.
单链DNA纯化对变性PAGE凝胶银染片段回收效率的提高   总被引:1,自引:0,他引:1  
为了提高变性聚丙烯酰胺凝胶电泳(PAGE)银染后片段回收的效率,本实验在传统的煮沸法的基础上加入单链DNA纯化的步骤对水稻基因组CCGG为点甲基化敏感限制性酶切多态性(MSAP)分析片段进行回收,并对加入该步骤后的再扩增的效率与传统煮沸法进行了比较。实验结果显示,加入单链DNA纯化步骤后的回收效率比传统煮沸法提高了约6倍。改进后的方法可以有效地用于扩增片段长度多态性(AFLP)以及MSAP等差异显示PAGE凝胶银染DNA片段的回收。  相似文献   

10.
DNA fragments that show a pattern of differential expression on differential display gels must be eluted from the gel matrix and reamplified to enable further analysis. Elution is usually achieved by heating excised gel slices in a small volume of either water or TE. Here we show that this elution step can adversely affect the ability of the eluted DNA to act as a template for PCR reamplification, probably via the process of depurination. Simply switching to an elution solvent designed to minimise depurination (PCR buffer) facilitates the elution of intact DNA fragments. This improvement is likely to be most beneficial when eluting higher molecular weight fragments (e.g. those >500 bp), in situations where the amount of DNA in an excised gel slice is limited or when contaminating differential display products co-migrate with the differentially expressed product.  相似文献   

11.
DNA polymorphism between two major japonica rice cultivars, Nipponbare and Koshihikari, was identified by AFLP. Eighty-four polymorphic AFLP markers were obtained by analysis with 360 combinations of primer pairs. Nucleotide sequences of 73 markers, 29 from Nipponbare and 44 from Koshihikari, were determined, and 46 AFLP markers could be assigned to rice chromosomes based on sequence homology to the rice genome sequence. Specific primers were designed for amplification of the regions covering the AFLP markers and the flanking sequences. Out of the 46 primer pairs, 44 amplified single DNA fragments, six of which showed different sizes between Nipponbare and Koshihikari, yielding codominant SCAR markers. Eight primer pairs amplified only Nipponbare sequences, providing dominant SCAR markers. DNA fragments amplified by 13 primer pairs showed polymorphism by CAPS, and polymorphism of those amplified by 13 other primer pairs were detected by PCR-RF-SSCP (PRS). Nucleotide sequences of the other four DNA fragments were determined in Koshihikari, but no difference was found between Koshihikari and Nipponbare. In total, 40 sequence-specific markers for the combination of Nipponbare and Koshihikari were produced. All the SNPs identified by AFLP were detectable by CAPS and PRS. The same method was applicable to a combination of Kokoromachi and Tohoku 168, and 23 polymorphic markers were identified using these two rice cultivars. The procedure of conversion of AFLP-markers to the sequence-specific markers used in this study enables efficient sequence-specific marker production for closely related cultivars.  相似文献   

12.
To validate strain typing by amplified fragment length polymorphism (AFLP) analysis in shiitake (Lentinula edodes) cultivars, the reproducibility of AFLP markers with DNA extracted from the heat-dried fruiting body was evaluated. DNAs were extracted from three different portions of the heat-dried fruiting body – the stipe, pileus, and gill – and AFLP analysis of all parts was carried out using two combinations of selected amplification primer pairs. AFLP profiles of DNA from the gill tissue of heat-dried fruiting body were almost identical to those of cultured mycelia in the same strains, although it was difficult to detect reproducible AFLP profiles from stipe and pileus DNA. These results indicated that AFLP analysis would be applicable for strain typing with heat-dried fruiting bodies of L. edodes by using the DNA extracted from gills.Contribution No. 364 of the Tottori Mycological Institute  相似文献   

13.
Amplified fragment length polymorphism (AFLP) markers have been widely used to generate molecular maps of plant species, including crops and cereals. We report on a useful protocol to identify AFLPs from Chlamydomonas reinhardtii Dangeard with digoxigenin labeled primers. Although Chlamydomonas has a small genome with a high GC content, we could detect polymorphic bands that led to the identification of several AFLP markers linked to the mating type locus of Chlamydomonas. Three of these markers were isolated from the gel, reamplified, and cloned. The clones were sequenced, and the insertion of the correct fragment was verified in AFLP gels and in Southern blots. One marker showed sequence identity to parts of the fus1 gene, known to be unique in the plus mating type. We also converted some of the AFLP markers into sequence tagged site markers, which allows a fast and convenient screening of progeny of crosses. This procedure will be a useful and fast alternative to the conventional generation of maps for the positional cloning of genes from Chlamydomonas.  相似文献   

14.
This study characterises the genetic variability of fig, Ficus carica L., using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. It compares the efficiency and utility of the two techniques in detecting variation and establishing genetic relationships among Tunisian fig cultivars. Our results show that using both marker systems, the Tunisian fig germ plasm is characterised by having a large genetic diversity at the deoxyribonucleic acid level, as most of AFLP bands were detected and all SSR markers were polymorphic. In fact, 351 (342 polymorphic) and 57 (57 polymorphic) bands were detected using AFLP and SSR primers, respectively. SSR markers were the most polymorphic with an average polymorphic information content value of 0.94, while AFLP markers showed the highest effective multiplex ratio (56.9) and marker index (45.2). The effective marker index was recorded highest (4.19) for AFLP markers and lowest (0.70) for the SSR ones. Our results demonstrate that (1) independent as well as combined analyses of cluster analyses of SSR and AFLP fragments showed that cultivars are clustered independently from their geographical origin, horticultural classifications and tree sex; (2) the analysis of molecular variance allowed the partitioning of genetic variation within and among fig groups and showed greater variation within groups and (3) AFLP and SSR markers datasets showed positive correlation. This study suggests the SSR and AFLP markers are suitable for diversity analysis and cultivars fingerprinting. An understanding of the genetic diversity and population structure of F. carica in Tunisia can also provide insight into the conservation and management of this species.  相似文献   

15.
Mei flower is one of the most famous ornamental flowers in eastern Asia for its blossoming in early spring. Amplified fragment length polymorphism (AFLP) is one of the most frequently used techniques for analysis of genetic variation and is used herein for the first time inPrunus mume. This research provides a detailed and modified AFLP protocol for Mei genomic DNA digested withEcoRI/PstI restriction endonuclease combinations. The 10 best primer pairs of high polymorphism were screened from 256 primer combinations that could reliably and repetitively distinguish 14 Mei samples and would be suitable for genetic analysis of more cultivars. Ten primer pairs produced up to a total of 524 AFLP bands and up to 233 polymorphic bands. The ratio of polymorphic bands scoped from 35.71% to 59.67%, and the average ratio was 44.46% in the 10 primers. AFLP is an effective, inexpensive, and timesaving technique for the genetic differentiation of the Mei cultivars, as evidenced in this study.  相似文献   

16.
70 strains of Aspergillus ochraceus mainly isolated from Brazilian coffee related sources were investigated for genetic relatedness using automated laser fluorescence analysis of AFLP fragments. Cluster analysis of fingerprints revealed a very close relationship among most of the strains. Based on these results, a sub-set of characteristic A. ochraceus strains was chosen for the detection of marker sequences. These sequences were obtained from silver stained AFLPs separated on polyacrylamide gels. A number of bands characteristic for A. ochraceus were detected and cut out from the gels. DNA was reamplified, cloned and fragments were sequenced. Based on these sequences a set of SCAR PCR-primers was constructed. PCRs were optimised for specificity and subsequently tested against a panel of Aspergillus species. Using this approach a PCR specific for Aspergillus ochraceus was developed.  相似文献   

17.
In the present study, two polymerase chain reaction (PCR)-based methods namely, randomly amplified polymophic DNA (RAPD) and amplification fragment length polymorphism (AFLP) were employed to assess genetic variations, which may appeared, in tissue culture-derived date palm (Phoenix dactylifera) offshoots. Analysis of RAPD banding patterns generated by PCR amplification using 37 random primers gave no evidences for somaclonal variations and the percentage of polymorphic bands in a total of 259 scored bands was zero. Meanwhile, analysis of AFLP banding patterns generated using 13 primer combinations pointed to minor genetic variations in the AFLP banding patterns. The percentage of genetic variations (polymorphism) in tissue culture-derived date palm offshoots belonging to cultivars Sakkoty, Gandila and Bertamoda was 2.6, 0.79 and 1 %, respectively, as revealed by AFLP analysis. The low percentage of genetic variations confirms the genetic stability of tissue culture-derived dry date palm cultivars.  相似文献   

18.
Genetic diversity in recent elite faba bean lines using AFLP markers   总被引:9,自引:0,他引:9  
Amplified fragment length polymorphism (AFLP) markers were used to study the genetic diversity among a large set (n = 79) of inbred lines of recent elite faba bean (Vicia faba L.) cultivars with Asian, European (Northern and Southern) and North African origin. The inbred lines were analyzed using eight selected AFLP primer combinations that produced 477 polymorphic fragments. Errors when scoring repeated lanes of one pre-amplification reaction on one gel were negligible, whereas errors when scoring lanes of two individuals of the same inbred line run on different gels were markedly higher. Scoring across gels should be backed by replicates and several appropriate check entries. Based on clustering with Jaccard's similarity coefficient and Principal Coordinate Analysis, only the Asian lines were distinct as a group, the other lines showed no marked further grouping. Nevertheless, several known pedigree relationships were verified. A priori grouping of inbred lines (geographic origin and seed size) and AFLP data corroborate available information on the history of spread and cultivation of faba bean in the studied regions. Based on the diversity observed, studies especially concerning the relationship between genetic similarity based on AFLP markers and hybrid performance within the European elite germplasm have been launched.Communicated by H.F. Linskens  相似文献   

19.
The results of AFLP study of 14 Capsicum annuum cultivars are presented. In spite of the known low genomic variation of large-fruited sweet pepper, AFLP analysis proved to be suitable for detecting polymorphism and genotyping pepper cultivars. Nine primer pairs were selected to allow identification of the cultivars under study. Among-cultivar polymorphism detectable with these primers was estimated at 16.5%. A characteristic AFLP pattern was obtained for each cultivar. Several cultivar-specific fragments were revealed for seven cultivars. On the basis of the AFLP data, genetic distances between cultivars were determined and a tree was constructed by means of hierarchic cluster analysis (UPGMA) with the Jacquard coefficient. It was assumed that this information is useful in breeding programs involving the cultivars examined.  相似文献   

20.
Amplified fragment length polymorphisms (AFLP) have been shown to be useful for linkage mapping in chickens and other domestic animals. It is often desirable to convert AFLP bands to sequence-tagged site (STS) markers, in particular, so that AFLP-based linkage information can be integrated with recombinant DNA clone-based maps. Sixteen chicken AFLP bands were excised from gels, re-amplified, cloned and analysed. All inserts proved to be EcoRI-TaqI fragments, which suggests that unlabelled TaqI-TaqI AFLP fragments do not amplify well, and therefore do not significantly contaminate AFLP bands. For eight of the AFLP, the cloned fragment was used to probe blots of AFLP reaction fingerprints, confirming that the predominant DNA clone indeed contained the polymorphic fragment. Flanking regions of selected AFLP fragments were isolated using Vectorette cloning. The results obtained suggest that the these chicken AFLP most commonly arise from sequence polymorphism at or near the TaqI site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号