首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
An established rat cell line expressing chondrocyte properties   总被引:7,自引:0,他引:7  
Chondrocytes express a well-characterized set of marker proteins making these cells useful for studies on differentiation and regulation of gene expression. Because of the inherent instability of primary rat chondrocytes in culture, and because several rat chondrocyte genes have been cloned and characterized (including the collagen II promoter and enhancer), a rat chondrocyte cell line would be especially useful. To obtain this line we infected primary fetal rat costal chondrocytes with a recombinant retrovirus (NIH/J-2) carrying the myc and raf oncogenes, which have been shown to have an "immortalizing" function. Following infection, a rapidly proliferating clonal line was isolated that maintained a stable phenotype through 45 passages (11/2 year in culture). This line, termed IRC, grows in suspension culture as multicellular aggregates and in monolayer culture as polygonal cells which accumulate an alcian blue-stainable matrix. IRC cells synthesize high levels of cartilage proteoglycan core protein, and link protein, but show reduced collagen II expression. In addition, the cells express virally derived myc mRNA and protein, but do not express v-raf. Retinoic acid, which is a known modulator of chondrocyte phenotype, down-regulates expression of chondrocyte marker proteins, while stimulating v-myc expression by IRC cells. These data suggest that v-myc expression by chondrocytes results in rapid cell division and maintenance of many aspects of the differentiated phenotype. These "immortalized" cells, however, remain responsive to agents such as retinoic acid which modulate cell phenotype. The potential exists for development of chondrocyte cell lines from diseased cartilage, as well as from human cartilage.  相似文献   

2.
3.
4.
5.
《The Journal of cell biology》1988,107(6):2455-2463
When transferred to suspension culture on agarose-coated dishes, dedifferentiated chick embryo chondrocytes resume the chondrocyte phenotype and continue their maturation to hypertrophic chondrocytes (Castagnola, P., G. Moro, F. Descalzi Cancedda, and R. Cancedda. 1986. J. Cell Biol. 102:2310-2317). In this paper we report the identification, purification, and characterization of a low molecular weight protein, named Ch 21, expressed and secreted by in vitro differentiating chondrocytes at a late stage of development. This protein is detectable in the cells after a short pulse labeling and is directly secreted in the culture medium. The Ch 21 protein has a peculiar resistance to limited pepsin digestion; nevertheless it is not collagenous in nature as revealed by its unaltered mobility when isolated from cells grown in the presence of alpha-alpha' dipyridyl, its resistance to bacterial collagenase, and its amino acid composition. By metabolic labeling of tissue slices and by immunohistochemistry, we show that in the chick embryo tibia the Ch 21 protein first appears at the boundary of the cone of hypertrophic cartilage and in the newly formed bone between the 6 and 10 d of embryo development and localizes in calcifying hypertrophic cartilage thereafter. The Ch 21 protein synthesized by the cultured chondrocytes is closely related and possibly identical to a 21K transformation- sensitive protein associated to the cell substratum of chick embryo fibroblasts.  相似文献   

6.
Expression of specific differentiation markers was investigated by histochemistry, immunofluorescence, and biosynthetic studies in osteoblasts outgrown from chips derived from tibia diaphyses of 18-day-old chick embryos. The starting osteoblast population expressed type I collagen and alkaline phosphatase in addition to other bone and cartilage markers as the lipocalin Ch21; the extracellular matrix deposited by these cells was not stainable for cartilage proteoglycans, and mineralization was observed when the culture was maintained in the presence of ascorbic acid, calcium and beta-glycerophosphate. During culture, clones of cells presenting a polygonal chondrocyte morphology and surrounded by an Alcian-positive matrix appeared in the cell population. Type II collagen and type X collagen were synthesized in these areas of chondrogenesis. In addition, chondrocytes isolated from these cultures expressed Ch21 and alkaline phosphatase. Chondrocytes were generated also from homogeneous osteoblast populations derived from a single cloned cell. The coexistence of chondrocytes and osteoblasts was observed during amplification of primary clones as well as in subclones. The data show the existence, within embryonic bone, of cells capable in vitro of both osteogenic and chondrogenic differentiation.  相似文献   

7.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

8.
Conditions have been defined for promoting growth and differentiation of hypertrophic chondrocytes obtained in culture starting from chick embryo tibiae. Hypertrophic chondrocytes, grown in suspension culture as described (Castagnola P., G. Moro, F. Descalzi Cancedda, and R. Cancedda. 1986. J. Cell Biol. 102:2310-2317), when they reached the stage of single cells, were transferred to substrate-dependent culture conditions in the presence of ascorbic acid. Cells showed a change in morphology, became more elongated and flattened, expressed alkaline phosphatase, and eventually mineralized. Type II and X collagen synthesis was halted and replaced by type I collagen synthesis. In addition the cells started to produce and to secrete in large amount a protein with an apparent molecular mass of 82 KD in reducing conditions and 63 KD in unreducing conditions. This protein is soluble in acidic solutions, does not contain collagenous domains, and is glycosylated. The Ch21 protein, a marker of hypertrophic chondrocytes and bone cells, was synthesized throughout the culture. We have defined this additional differentiation stage as an osteoblast-like stage. Calcium deposition in the extracellular matrix occurred regardless of the addition of beta glycerophosphate to the culture medium. Comparable results were obtained both when the cells were plated at low density and when they were already at confluence and maintained in culture without passaging up to 50 d. When retinoic acid was added to the hypertrophic chondrocyte culture between day 1 and day 5 the maturation of the cells to the osteoblast-like stage was highly accelerated. The switch in the collagen secretion was already observed after 2 d and the production of the 63-kD protein after 3 d. Mineralization was observed after 15-20 d.  相似文献   

9.
10.
Chondrocytes enzymatically dissociated from 13-day-old mouse embryo tibia grow in monolayer culture with a fibroblast-like phenotype and express high levels of type I collagen. Chondrogenesis can be induced by transferring the adherent cells in suspension culture and maintaining them in the constant presence of mouse embryo extract. Round shaping of the cells and formation of multicellular aggregates rapidly follow the passage in anchorage-independent conditions. Cell differentiation is evidenced by a marked decrease in the level of type I collagen and by the induction of type II collagen which accumulates when ascorbic acid is included in the culture medium. The addition of the vitamin also triggers the aggregated chondrocytes to organize their extracellular matrix giving rise to a structure closely resembling the in vivo developing cartilage.  相似文献   

11.
《The Journal of cell biology》1994,126(5):1311-1318
Epiphyseal chondrocytes cultured in a medium containing 10% serum may be maintained as three dimensional aggregates and differentiate terminally into hypertrophic cells. There is an attendant expression of genes encoding type X collagen and high levels of alkaline phosphatase activity. Manipulation of the serum concentration to optimal levels of 0.1 or 0.01% in this chondrocyte pellet culture system results in formation of features of developing cartilage architecture which have been observed exclusively in growth cartilage in vivo. Cells are arranged in columns radiating out from the center of the tissue, and can be divided into distinct zones corresponding to the recognized stages of chondrocyte differentiation. Elimination of the optimal serum concentration in a chemically defined medium containing insulin eliminates the events of terminal differentiation of defined cartilage architecture. Chondrocytes continue to enlarge into hypertrophic cells and synthesize type X collagen mRNA and protein, but in the absence of the optimal serum concentration, alkaline phosphatase activity does not increase and the cells retain a random orientation. Addition of thyroxine to the chemically defined medium containing insulin and growth hormone results in dose-dependent increases in both type X collagen synthesis and alkaline phosphatase activity, and reproduces the optimal serum-induced morphogenesis of chondrocytes into a columnar pattern. These experiments demonstrate the critical role of thyroxine in cartilage morphogenesis.  相似文献   

12.
In vitro morphogenesis of chick embryo hypertrophic cartilage   总被引:14,自引:10,他引:4       下载免费PDF全文
Dedifferentiated chick embryo chondrocytes (Castagnola, P., G. Moro, F. Descalzi-Cancedda, and R. Cancedda, 1986, J. Cell Biol., 102:2310-2317), when transferred to suspension culture on agarose-coated dishes in the presence of ascorbic acid, aggregate and remain clustered. With time in culture, clusters grow in size and adhere to each other, forming structures that may be several millimeters in dimension. These structures after 7 d of culture have the histologic appearance of mature hypertrophic cartilage partially surrounded by a layer of elongated cells resembling the perichondrium. Cells inside the aggregates have ultrastructural features of stage I (proliferating) or stage II (hypertrophic) chondrocytes depending on their location. Occurrence and distribution of type I, II, and X collagens in the in vitro-formed cartilage at different times of culture, show a temporal and spatial distribution of these antigens reminiscent of the maturation events occurring in the cartilage in vivo. A comparable histologic appearance is shown also by cell aggregates obtained starting with a population of cells derived from a single, cloned, dedifferentiated chondrocyte.  相似文献   

13.
Chondrocytes from chicken embryo tibia can be maintained in culture as adherent cells in Coon's modified Ham's F-12 medium supplemented with 10% FCS. In this condition, they dedifferentiate, losing type II collagen expression in favor of type I collagen synthesis. Their differentiation to hypertrophy can be obtained by transferring them to suspension culture. Differentiation is evidenced by the shift from type I to type II and type IX collagen synthesis and the following predominant expression of type X collagen, all markers of specific stages of the differentiation process. To identify the factors required for differentiation, we developed a serum-free culture system where only the addition of triiodothyronine (T3; 10(-11) M), insulin (60 ng/ml), and dexamethasone (10(-9) M) to the F-12 medium was sufficient to obtain hypertrophic chondrocytes. In this hormonal context, chondrocytes display the same changes in the pattern of protein synthesis as described above. For proper and complete cell maturation, T3 and insulin concentrations cannot be modified. Insulin cannot be substituted by insulin-like growth factor-I, but dexamethasone concentration can be decreased to 10(-12) M without chondrogenesis being impaired. In the latter case, the expression of type X collagen and its mRNA are inversely proportional to dexamethasone concentration. When ascorbic acid is added to the hormone-supplemented medium, differentiating chondrocytes organize their matrix leading to a cartilage-like structure with hypertrophic chondrocytes embedded in lacunae. However, this structure does not present detectable calcification, at variance with control cultures maintained in FCS. Accordingly, in the presence of the hormone mixture, the differentiating chondrocytes have low levels of alkaline phosphatase activity. This report indicates that T3 and insulin are primary factors involved in the onset and progression of chondrogenesis, while dexamethasone supports cell viability and modulates some differentiated functions.  相似文献   

14.
Primary chondrocytes from quail embryo epiphysis (quail epiphyseal chondrocytes, QEC) can grow either in suspension or in monolayer. In this study, the adhesion of QEC to collagen II was used as a model to study the regulation of the ligand-binding activity of integrin receptors that allows these cells to undergo a rapid transition from suspension to an adherent state. Preincubation of suspension QEC (QECSP) with the disintegrin echistatin increased by 40% their adhesion to collagen II. An inverse relationship between immobilized collagen density and echistatin-induced increase of chondrocyte adhesion was observed, thus suggesting that the disintegrin acts by increasing the ligand-binding affinity of collagen receptor(s). Further, echistatin activity does not appear to depend upon a direct binding of the disintegrin to collagen receptor(s). In fact, immobilized anti-beta1 antibodies, but not immobilized echistatin, served as effective binding sites for QECSP. Echistatin failed to stimulate chondrocyte adhesion to collagen in the presence of metabolic inhibitors, while an activating anti-beta1 antibody was still effective. Thus, echistatin may promote cell adhesion by interfering with energy-dependent signals that keep the collagen receptor(s) in a low-affinity state. Adhesion experiments performed in the presence of pharmacological inhibitors indicate that phosphatidyl inositol 3-kinase (PI3-K)/protein kinase C (PKC) and protein kinase A (PKA) pathways may transmit opposing signals on chondrocyte adhesion, and that collagen receptors are kept in a low-affinity state by PI3-kinase/PKC signalling. Since echistatin is a high-affinity ligand for alphavbeta3 integrin, the effect of the function-blocking anti-alphavbeta3 antibody LM609 was investigated. Like echistatin, LM609 stimulated chondrocyte adhesion to collagen and failed to support their attachment. Therefore, our data suggest that alphavbeta3-antagonists might regulate the binding activity of the beta1 collagen receptor, which in turn leads to the rapid transition of chondrocytes from suspension to an adherent state.  相似文献   

15.
Immunohistochemical studies of the chick columella have shown that the extracellular matrix of this ossicular cartilage template is composed largely of type II collagen. As development proceeds, synthesis of type X collagen, a hypertrophic cartilage-specific molecule, is initiated by endochondral chondrocytes within the zone of cartilage cell hypertrophy. Subsequently, these cells and their surrounding extracellular matrix are removed, resulting in marrow cavity formation. We have examined which of these processes are programmed within the columella chondrocytes themselves, and which require involvement of exogenous factors. Prehypertrophic columella from 12-day chick embryos were grown either in organ culture on Nuclepore filters or as explants on the chorioallantoic membrane of host embryos. Chondrocytes from the same source were grown in monolayer cell cultures. In both organ culture and cell culture, chondrocytes developed to the stage at which some of them entered the hypertrophic program and initiated the production of type X collagen as determined by immunofluorescence histochemistry with a monoclonal antibody specific for that collagen type. The organ cultures, however, did not progress to the next stage, in which detectable removal of the type X collagen-containing matrix occurs. When identical columella were grown on the chorioallantoic membrane of host chicks, the type X collagen-containing matrix which formed was rapidly removed, resulting in the formation of a marrow cavity. Thus, progression of endochondral chondrocytes to the deposition of type X collagen-containing matrix seems to be programmed within the cells themselves. Subsequent removal of this matrix requires the involvement of exogenous factors.  相似文献   

16.
Periosteum contains osteochondral progenitor cells that can differentiate into osteoblasts and chondrocytes during normal bone growth and fracture healing. TGF-beta 1 and BMP-2 have been implicated in the regulation of the chondrogenic differentiation of these cells, but their roles are not fully defined. This study was undertaken to investigate the chondrogenic effects of TGF-beta 1 and BMP-2 on rat periosteum-derived cells during in vitro chondrogenesis in a three-dimensional aggregate culture. RT-PCR analyses for gene expression of cartilage-specific matrix proteins revealed that treatment with BMP-2 alone and combined treatment with TGF-beta 1 and BMP-2 induced time-dependent mRNA expression of aggrecan core protein and type II collagen. At later times in culture, the aggregates treated with BMP-2 exhibited expression of type X collagen and osteocalcin mRNA, which are markers of chondrocyte hypertrophy. Aggregates incubated with both TGF-beta 1 and BMP-2 showed no such expression. Treatment with TGF-beta 1 alone did not lead to the expression of type II or X collagen mRNA, indicating that this factor itself did not independently induce chondrogenesis in rat periosteal cells. These data were consistent with histological and immunohistochemical results. After 14 days in culture, BMP-2-treated aggregates consisted of many hypertrophic chondrocytes within a metachromatic matrix, which was immunoreactive with anti-type II and type X collagen antibodies. In contrast, at 14 days, TGF-beta 1 + BMP-2-treated aggregates did not contain any morphologically identifiable hypertrophic chondrocytes and their abundant extracellular matrix was not immunoreactive to the anti-type X collagen antibody. Expression of BMPR-IA, TGF-beta RI, and TGF-beta RII receptors was detected at all times in each culture condition, indicating that the distinct responses of aggregates to BMP-2, TGF-beta 1 and TGF-beta 1 + BMP-2 were not due to overt differences in receptor expression. Collectively, our results suggest that BMP-2 induces neochondrogenesis of rat periosteum-derived cells, and that TGF-beta 1 modulates the terminal differentiation in BMP-2 induced chondrogenesis.  相似文献   

17.
In this study the distribution of type X collagen in thyroid cartilages of various ages is described. Fetal and juvenile thyroid cartilage was negative for type X collagen, but showed a strong staining reaction for type II collagen. Type X collagen and calcium deposition were first detected in thyroid cartilage of 18-to 21-year-old adults. Type X collagen was restricted to large chondrocytes near or in mineralized cartilage, confirming the notion that type X collagen precedes mineralization. From these observations it was concluded that chondrocytes in thyroid cartilage undergo differentiation steps that are similar, but much slower, compared to cells in growth plate and sternal cartilage. Some type X collagen-positive areas also showed staining for type I collagen, suggesting that there is a further differentiation of chondrocytes to cells which are characterized by the simultaneous synthesis of type X and I collagen. However, a dedifferentiation process during aging of thyroid cartilage where cells switch from synthesis of type II to type I collagen cannot be excluded.  相似文献   

18.
19.
We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences, probably inhibitory in nature, must regulate chondrogenesis in mesectodermal derivatives. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Single cells from enzymatically dissociated chick embryo tibiae have been cloned and expanded in fresh or conditioned culture media. A cloning efficiency of approximately 13% was obtained using medium conditioned by dedifferentiated chondrocytes. A cloning efficiency of only 1.4% was obtained when conditioned medium from hypertrophic chondrocytes was used, and efficiencies of essentially 0 were found with fresh medium or medium conditioned by J2-3T3 mouse fibroblasts. Cell clones were selected by morphological criteria and clones showing a dedifferentiated phenotype (fibroblast-like) were further characterized. Out of 38 clones analyzed, 17 were able to differentiate to the hypertrophic chondrocyte stage and reconstitute hypertrophic cartilage when placed in the appropriate culture conditions. Cells from these clones expressed the typical markers of chondrocyte differentiation, i.e., type II and type X collagens. Clones not undergoing differentiation continued to express only type I collagen. Hypertrophic chondrocytes from differentiating clones were analyzed at the single cell level by immunofluorescence; all the cells were positive for type X collagen, while approximately 50% of them showed positivity for type II collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号