首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Kidneys of new-born animals are resistant to arginine vasopressin (AVP). The ability of the hormone to regulate water permeability of the collecting duct can be seen from weaning period, probably due to the maturation of the intracellular signaling pathway. The purpose of the present work was to investigate the effect of V2 receptor agonist dDAVP on the water permeability of OMCD basolateral membrane in 10-, 22- and 60-day old Wistar rats. We also estimated ontogenetic gene expression of AQP2, AQP3, AQP4 and V2 receptor. Osmotic water permeability (Pf) of the basolateral membrane of microdissected OMCD was measured under control conditions and after incubation with the agonist V2 receptor desmopressin (dDAVP; 10(-7) M). Water permeability in 10- and 22-day old rats under control conditions were significantly higher than in adults. Desmopressin stimulated significant increase of this parameter in 22-day old pups (Pf = = 125 +/- 4.85; Pf = 174 +/- 8.2 microns/s, p < 0.001) and adult rats (Pf = 100.5 +/- 7.38; Pf = 178.8 +/- 9.54 microns/s, p < 0.001). Osmotic water permeability of the OMCD basolateral membrane in 10-day old rats does not depend on dDAVP (Pf = 172.5 +/- 23.8; Pf = 164.8 +/- 34 microns/s). With the RT-PCR, we observed a gradual increase of AQP2 and V2 receptor genes expression during postnatal ontogenesis. The gene expression of AQP3 and AQP4 remained unchanged during postnatal ontogenesis. In general, the water permeability of the OMCD basolateral membrane of rats can be stimulated by AVP since the 22nd day of postnatal life. The water permeability of the OMCD basolateral membrane under control conditions gradually decreased during postnatal development, while gene expression of AQP3 and AQP4 was unchanged. The mechanism of this decrease remains to be established.  相似文献   

2.
The role of AQP2,3 and intracellular calcium in vasopressin-induced increase in the water permeability of the basolateral cell membrane in microdissected rat kidney OMCD was studied. It was shown that increase in the water permeability of the basolateral membranes correlated with increase in the content of AQP2 and AQP3 in the membrane fraction isolated from outer kidney medulla. Preliminary loading of cells with BAPTA-AM which binds intracellular Ca2+ abolished the increase in the water permeability and prevented the rise of the AQP2 content in response to dDAVP. BAPTA was ineffective to block the enhancement of AQP2 content in membrane fraction in presence of dDAVP. These results suggest that the increase in intracellular calcium activity and the enhanced content of AQP2 in plasma membrane are important for the antidiuretic effect of dDAVP.  相似文献   

3.
In renal collecting ducts, vasopressin increases the expression of and redistributes aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane, leading to urine concentration. However, basolateral membrane expression of AQP2, in addition to AQP3 and AQP4, is often detected in inner medullary principal cells in vivo. Here, potential mechanisms that regulate apical versus basolateral targeting of AQP2 were examined. The lack of AQP2-4 association into heterotetramers and the complete apical expression of AQP2 when highly expressed in Madin-Darby canine kidney cells indicated that neither heterotetramerization of AQP2 with AQP3 and/or AQP4, nor high expression levels of AQP2 explained the basolateral AQP2 localization. However, long term hypertonicity, a feature of the inner medullary interstitium, resulted in an insertion of AQP2 into the basolateral membrane of Madin-Darby canine kidney cells after acute forskolin stimulation. Similarly, a marked insertion of AQP2 into the basolateral membrane of principal cells was observed in the distal inner medulla from normal rats and Brattleboro rats after acute vasopressin treatment of tissue slices that had been chronically treated with vasopressin to increase interstitial osmolality in the medulla, but not in tissues from vasopressin-deficient Brattleboro rats. These data reveal for the first time that chronic hypertonicity can program cells in vitro and in vivo to change the insertion of a protein into the basolateral membrane instead of the apical membrane.  相似文献   

4.
5.
Lipid rafts are cholesterol- and shingolipid-enriched membrane microdomains implicated in membrane signaling and trafficking. To assess renal epithelial raft functions through the characterization of their associated membrane proteins, we have isolated lipid rafts from rat kidney by sucrose gradient fractionation after detergent treatment. The low-density fraction was enriched in cholesterol, sphingolipid, and flotillin-1 known as lipid raft markers. Based on proteomic analysis of the low-density fraction, the protein with the highest significance score was the alpha-subunit of Na(+)-K(+)-ATPase (NKA), whose raft association was validated by simultaneous immunoblotting. The beta-subunit of NKA was copurified from the low-density fraction. To test the role of lipid rafts in sorting and membrane delivery of renal-transporting epithelia, we have chosen to study thick ascending limb (TAL) epithelium for its high NKA activity and the property to be stimulated by antidiuretic hormone (ADH). Cultured rabbit TAL cells were studied. Cholesterol depletion and detergent extraction at warmth caused a shift of NKA to the higher-density fractions. Comparative preparations from blood monocytes revealed the absence of NKA from rafts in these nonpolarized cells. Short-term exposure of rabbit TAL cells to ADH (1 h) caused translocation and enhanced raft association of NKA via cAMP activation. Preceding cholesterol depletion prevented this effect. TAL-specific, glycosylphosphatidylinositol-anchored Tamm Horsfall protein was copurified with NKA in the same raft fraction, suggesting functional interference between these products. These results may have functional implications regarding the turnover, trafficking, and regulated surface expression of NKA as the major basolateral ion transporter of TAL.  相似文献   

6.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na+/K+-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

7.
In mammals, the regulation of water homeostasis is mediated by the aquaporin-1 (AQP1) water channel, which localizes to the basolateral and apical membranes of the early nephron segment, and AQP2, which is translocated from intracellular vesicles to the apical membrane of collecting duct cells after vasopressin stimulation. Because a similar localization and regulation are observed in transfected Madin-Darby Canine Kidney (MDCK) cells, we investigated which segments of AQP2 are important for its routing to forskolin-sensitive vesicles and the apical membrane through analysis of AQP1-AQP2 chimeras. AQP1 with the entire COOH tail of AQP2 was constitutively localized in the apical membrane, whereas chimeras with shorter COOH tail segments of AQP2 were localized in the apical and basolateral membrane. AQP1 with the NH2 tail of AQP2 was constitutively localized in both plasma membranes, whereas AQP1 with the NH2 and COOH tail of AQP2 was sorted to intracellular vesicles and translocated to the apical membrane with forskolin. These data indicate that region N220-S229 is essential for localization of AQP2 in the apical membrane and that the NH2 and COOH tail of AQP2 are essential for trafficking of AQP2 to intracellular vesicles and its shuttling to and from the apical membrane. routing signals; chimera; Madin-Darby canine kidney cells; regulated trafficking  相似文献   

8.
Epithelial renal collecting duct cells express multiple types of aquaporin (AQP) water channels in a polarized fashion. AQP2 is specifically targeted to the apical cell domain, whereas AQP3 and AQP4 are expressed on the basolateral membrane. It is crucial that these AQP variants are sorted to their proper polarized membrane domains, because correct AQP sorting enables efficient water transport. However, the molecular mechanisms involved in the polarized targeting and membrane trafficking of AQPs remain largely unknown. In the present study, we have examined the polarized trafficking and surface expression of AQP3 in Madin-Darby canine kidney type II (MDCKII) cells in an effort to identify the molecular determinants of polarized targeting specificity. When expressed in MDCKII cells, the majority of the exogenous wild-type AQP3 was found to be targeted to the basolateral membrane, consistent with its localization pattern in vivo. A potential sorting signal consisting of tyrosine- and dileucine-based motifs was subsequently identified in the AQP3 NH2 terminus. When mutations were introduced into this signaling region, the basolateral targeting of the resulting mutant AQP3 was disrupted and the mutant protein remained in the cytoplasm. AQP2-AQP3 chimeras were then generated in which the entire NH2 terminus of AQP2 was replaced with the AQP3 NH2 terminus. This chimeric protein was observed to be mislocalized constitutively in the basolateral membrane, and mutations in the AQP3 NH2-terminal sorting signal abolished this effect. On the basis of these results, we conclude that an NH2-terminal sorting signal mediates the basolateral targeting of AQP3. epithelial cells; protein sorting; Madin-Darby canine kidney cells; basolateral  相似文献   

9.
Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2.  相似文献   

10.
Aquaporin-1 (AQP1) water channel plays a critical role for water reabsorption in the urinary concentrating mechanism. AQP1 expression in renal cells is upregulated by hypertonicity, but not urea, suggesting the requirement of an osmotic gradient. To investigate whether AQP1 expression is regulated by apical and/or basolateral hypertonicity, murine renal medullary mIMCD-K2 cells grown on permeable support were exposed to hypertonic medium. When the medium on the apical or basolateral membrane side was switched to hypertonic, the transcellular osmotic gradient was dissipated within 8h. Basolateral hypertonicity increased AQP1 expression more than apical hypertonicity. Comparable apical and basolateral hypertonicity without a transcellular hypertonic gradient, however, increased AQP1 expression. Cell surface biotinylation experiments revealed that hypertonicity promoted AQP1 trafficking to both plasma cell membranes. These results indicate that AQP1 expression is predominantly mediated by basolateral hypertonicity but a transcellular osmotic gradient is not necessary for its induction.  相似文献   

11.
It is well recognized that ANG II interacts with arginine vasopressin (AVP) to regulate water reabsorption and urine concentration in the kidney. The present study used ANG II type 1a (AT(1a)) receptor-deficient (Agtr1a(-/-)) mice to test the hypothesis that AT(1a) receptor signaling is required for basal and water deprivation-induced urine concentration in the renal medulla. Eight groups of wild-type (WT) and Agtr1a(-/-) mice were treated with or without 24-h water deprivation and 1-desamino-8-d-AVP (DDAVP; 100 ng/h ip) for 2 wk or with losartan (10 mg/kg ip) during water deprivation. Under basal conditions, Agtr1a(-/-) mice had lower systolic blood pressure (P < 0.01), greater than threefold higher 24-h urine excretion (WT mice: 1.3 ± 0.1 ml vs. Agtr1a(-/-) mice: 5.9 ± 0.7 ml, P < 0.01), and markedly decreased urine osmolality (WT mice: 1,834 ± 86 mosM/kg vs. Agtr1a(-/-) mice: 843 ± 170 mosM/kg, P < 0.01), without significant changes in 24-h urinary Na(+) excretion. These responses in Agtr1a(-/-) mice were associated with lower basal plasma AVP (WT mice: 105 ± 8 pg/ml vs. Agtr1a(-/-) mice: 67 ± 6 pg/ml, P < 0.01) and decreases in total lysate and membrane aquaporin-2 (AQP2; 48.6 ± 7% of WT mice, P < 0.001) and adenylyl cyclase isoform III (55.6 ± 8% of WT mice, P < 0.01) proteins. Although 24-h water deprivation increased plasma AVP to the same levels in both strains, 24-h urine excretion was still higher, whereas urine osmolality remained lower, in Agtr1a(-/-) mice (P < 0.01). Water deprivation increased total lysate AQP2 proteins in the inner medulla but had no effect on adenylyl cyclase III, phosphorylated MAPK ERK1/2, and membrane AQP2 proteins in Agtr1a(-/-) mice. Furthermore, infusion of DDAVP for 2 wk was unable to correct the urine-concentrating defects in Agtr1a(-/-) mice. These results demonstrate that AT(1a) receptor-mediated ANG II signaling is required to maintain tonic AVP release and regulate V(2) receptor-mediated responses to water deprivation in the inner medulla.  相似文献   

12.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na(+)/K(+)-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

13.
Transaldolase (TAL) is expressed at selectively high levels in oligodendrocytes and targeted by autoreactive T cells of patients with multiple sclerosis (MS). Among 14 TAL peptides with predicted HLA-A2 binding, TAL 168-176 (LLFSFAQAV, TALpep) exhibited high affinity for HLA-A2. Prevalence of HLA-A2-restricted CD8+ T cells specific for TALpep was increased in PBMC of HLA-A2+ MS patients, as compared with HLA-A2- MS patients, HLA-A2+ other neurological disease patients, and HLA-A2+ healthy donors. HLA-A*0201/TALpep tetramers detected increased frequency of TAL-specific CD8+ T cells, and precursor frequency of TAL-specific IFN-gamma-producing T cells was increased in each of seven HLA-A2+ MS patients tested. Stimulation by TALpep or rTAL of PBMC from HLA-A2+ MS patients elicited killing of TALpep-pulsed HLA-A2-transfected HmyA2.1 lymphoma cells, but not HLA-A3-transfected control HmyA3.1 targets. Without peptide pulsing of targets, HLA-A2-transfected, but not control MO3.13 oligodendroglial cells, expressing high levels of endogenous TAL, were also killed by CD8+ CTL of MS patients, indicating recognition of endogenously processed TAL. TCR Vbeta repertoire analysis revealed use of the TCR Vbeta14 gene by T cell lines (TCL) of MS patients generated via stimulation by TAL- or TALpep-pulsed APCs. All TAL-specific TCL-binding HLA-A*0201/TALpep tetramers expressed TCR Vbeta14 on the cell surface. Moreover, Ab to TCR Vbeta14 abrogated cytotoxicity by HLA-A2-restricted TAL-specific TCL. Therefore, TAL-specific CTL may serve as a novel target for therapeutic intervention in patients with MS.  相似文献   

14.
Aquaporin 4 (AQP4) is the predominant water channel in the brain. It is targeted to specific membrane domains of astrocytes and plays a crucial role in cerebral water balance in response to brain edema formation. AQP4 is also specifically expressed in the basolateral membranes of epithelial cells. However, the molecular mechanisms involved in its polarized targeting and membrane trafficking remain largely unknown. Here, we show that two independent C-terminal signals determine AQP4 basolateral membrane targeting in epithelial MDCK cells. One signal involves a tyrosine-based motif; the other is encoded by a di-leucine-like motif. We found that the tyrosine-based basolateral sorting signal also determines AQP4 clathrin-dependent endocytosis through direct interaction with the mu subunit of AP2 adaptor complex. Once endocytosed, a regulated switch in mu subunit interaction changes AP2 adaptor association to AP3. We found that the stress-induced kinase casein kinase (CK)II phosphorylates the Ser276 immediately preceding the tyrosine motif, increasing AQP4-mu 3A interaction and enhancing AQP4-lysosomal targeting and degradation. AQP4 phosphorylation by CKII may thus provide a mechanism that regulates AQP4 cell surface expression.  相似文献   

15.
The mammalian exocrine pancreas secretes a near-isosmotic fluid over a wide osmolarity range. The role of aquaporin (AQP) water channels in this process is now becoming clearer. AQP8 water channels, which were initially cloned from rat pancreas, are expressed at the apical membrane of pancreatic acinar cells and contribute to their osmotic permeability. However, the acinar cells secrete relatively little fluid and there is no obvious defect in pancreatic function in AQP8 knockout mice. Most of the fluid secreted by the pancreas is generated by ductal epithelial cells, which comprise only a small fraction of the gland mass. In the human pancreas, secretion occurs mainly in the intercalated ducts, where the epithelial cells express abundant AQP1 and AQP5 at the apical membrane and AQP1 alone at the basolateral membrane. In the rat and mouse, fluid secretion occurs mainly in the interlobular ducts where AQP1 and AQP5 are again co-localized at the apical membrane but appear to be expressed at relatively low levels. Nonetheless, the transepithelial osmotic permeability of rat interlobular ducts is sufficient to support near-isosmotic fluid secretion at observed rates. Furthermore, apical, but not basolateral, application of Hg2+ significantly reduces the transepithelial osmotic permeability, suggesting that apical AQP1 and AQP5 may contribute significantly to fluid secretion. The apparently normal fluid output of the pancreas in AQP1 knockout mice may reflect the presence of AQP5 at the apical membrane.  相似文献   

16.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   

17.
AS160, a novel Akt substrate of 160 kDa, contains a Rab GTPase-activating protein (GAP) domain. The present study examined the role of Akt and AS160 in aquaporin-2 (AQP2) trafficking. The main strategy was to examine the changes in AQP2 translocation in response to small interfering RNA (siRNA)-mediated AS160 knockdown in mouse cortical collecting duct cells (M-1 cells and mpkCCDc14 cells). Short-term dDAVP treatment in M-1 cells stimulated phosphorylation of Akt (S473) and AS160, which was also seen in mpkCCDc14 cells. Conversely, the phosphoinositide 3-kinase (PI3K) inhibitor LY 294002 diminished phosphorylation of Akt (S473) and AS160. Moreover, siRNA-mediated Akt1 knockdown was associated with unchanged total AS160 but decreased phospho-AS160 expression, indicating that phosphorylation of AS160 is dependent on PI3K/Akt pathways. siRNA-mediated AS160 knockdown significantly decreased total AS160 and phospho-AS160 expression. Immunocytochemistry revealed that AS160 knockdown in mpkCCDc14 cells was associated with increased AQP2 density in the plasma membrane [135 ± 3% of control mpkCCDc14 cells (n = 65), P < 0.05, n = 64] despite the absence of dDAVP stimulation. Moreover, cell surface biotinylation assays of mpkCCDc14 cells with AS160 knockdown exhibited significantly higher AQP2 expression [150 ± 15% of control mpkCCDc14 cells (n = 3), P < 0.05, n = 3]. Taken together, PI3K/Akt pathways mediate the dDAVP-induced AS160 phosphorylation, and AS160 knockdown is associated with higher AQP2 expression in the plasma membrane. Since AS160 contains a GAP domain leading to a decrease in the active GTP-bound form of AS160 target Rab proteins for vesicle trafficking, decreased expression of AS160 is likely to play a role in the translocation of AQP2 to the plasma membrane.  相似文献   

18.
Aquaporins (AQPs) are water channel proteins that participate in water transport. In the principal cells of the kidney collecting duct, water reabsorption is mediated by the combined action of AQP2 in the apical membrane and both AQP3 and AQP4 in the basolateral membrane, and the expression of AQP2 and AQP3 is regulated by antidiuretic hormone and water restriction. The effect of hypertonicity on AQP3 expression in Madin-Darby canine kidney (MDCK) epithelial cells was investigated by exposing the cells to hypertonic medium containing raffinose or NaCl. Northern blot and immunoblot analyses revealed that the amounts of AQP3 mRNA and AQP3 protein, respectively, were markedly increased by exposure of cells to hypertonicity. These effects were maximal at 12 and 24 h, respectively. Immunofluorescence and immunoelectron microscopy also demonstrated that the abundance of AQP3 protein was increased in cells incubated in hypertonic medium and that the protein was localized at the basolateral plasma membrane. These results indicate that the expression of AQP3 is upregulated by hypertonicity.  相似文献   

19.
Principal mechanism of the transepithelial water permeability increase in the kidney collecting ducts in response to vasopressin involves insertion of aquaporin 2 (AQP2) into the apical membrane. Previously we have shown that water permeability of the basolateral membrane also may be increased with stimulation of V2-receptors. It is known that inhibition of G(i)-proteins with pertussis toxin blocks redistribution of AQP2 into the apical membrane following the application of vasopressin or forskolin. The aim of the present study was to investigate potential involvement of G(i)-proteins in regulation of basolateral membrane water permeability. Effect of pertussis toxin on the ability of desmopressin to increase the basolateral membrane osmotic water permeability was investigated, and the expression of Galpha(i)2 and Galpha(i)3 genes under normal conditions and after 2 days of water deprivation were evaluated. We demonstrated that dehydration leds to a 30% increase of Galpha(i)3 mRNA content while the Galpha(i)2 mRNA level remains unchanged. In control experiments, basolateral membrane water permeability increased in response to desmopressin from 59.2 +/- 6.61 to 70.6 +/- 9.2 microm/s (p < 0.05, paired t-test). Pertussis toxin completely blocked this reaction (53.5 +/- 5.18 vs 50.1 +/- 6.50 microm/s, respectively). We conclude that G(i)-proteins participate in the mechanism of the basolateral membrane water permeability increase in response to stimulation of V2-receptors. Clarification of the G(i)-proteins role in this process requires further investigation, but most likely they are involved in regulation of aquaporin transport and insertion into the cell membrane.  相似文献   

20.
Both the acinar and ductal cells of the pancreas secrete a near-isotonic fluid and may thus be sites of aquaporin (AQP) water channel expression. Northern blot analysis of mRNA from whole rat pancreas revealed high levels of AQP1 and AQP8 expression, whereas lower levels of AQP4 and AQP5 expression were just detectable by RT-PCR Southern blot analysis. Immunohistochemistry showed that AQP1 is localized in the microvasculature, whereas AQP8 is confined to the apical pole of the acinar cells. No labeling of acinar, ductal, or vascular tissue was detected with antibodies to AQP2-7. With immunoelectron microscopy, AQP8 labeling was observed not only at the apical membrane of the acinar cells but also among small intracellular vesicles in the subapical cytoplasm, suggesting that there may be regulated trafficking of AQP8 to the apical plasma membrane. To evaluate the contribution of AQPs to the membrane water permeability, video microscopy was used to measure the swelling of acinar cells in response to hypotonic stress. Osmotic water permeability was reduced by 90% following exposure to Hg(2+). Since AQP8 is confined to the apical membrane, the marked effect of Hg(2+) suggests that other water channels may be expressed in the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号