首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Target protein identification of bioactive small molecules is one of the most important research in forward chemical genetics. The affinity chromatography technique to use a resin bound with a small molecule is often used for identification of a target protein of a bioactive small molecule. Here we report a new method to isolate a protein targeted with a bioactive small molecule using a biotin linker with alkyne and amino groups, protein cross-linker containing disulfide bond, and a bioactive small molecule with an azido group (azido probe). After an azido probe is associated with a target protein, the complex of a target protein and azido probe is covalently bound through the biotin linker by azide-alkyne Huisgen cycloaddition and protein cross-linker containing disulfide bond. This ternary complex is immobilized on an affinity matrix with streptavidin, and then the target protein is selectively eluted with a buffer containing a reducing agent for cleavage of disulfide bonds. This method uses a probe having an azido group, which a small functional group, and has the possibility to be a solution strategy to overcome the hindrance of a functional group introduced into the probe that reduces association a target protein. The effectiveness of the method in this study was shown using linker 1, 3′-azidoabscisic acid 3, and protein cross-linker containing a disulfide bond (DTSSP 5).  相似文献   

5.
Full experimental procedures for the synthesis of a series of new functional linker reagents (14-16) and solid supports (11-13) are reported. The achiral linker reagents and supports can be used for high yield incorporation of free amino groups, fluorescein or biotin into DNA oligomers.  相似文献   

6.
7.
8.
9.
10.
Site-specific labeling of RNA molecules is a valuable tool for studying their structure and function. Here, we describe a new site-specific RNA labeling method, which utilizes a DNA-templated chemical reaction to attach a label at a specific internal nucleotide in an RNA molecule. The method is nonenzymatic and based on the formation of a four-way junction, where a donor strand is chemically coupled to an acceptor strand at a specific position via an activated chemical group. A disulfide bond in the linker is subsequently cleaved under mild conditions leaving a thiol group attached to the acceptor-RNA strand. The site-specific thiol-modified target RNA can then be chemically labeled with an optional group, here demonstrated by coupling of a maleimide-functionalized fluorophore. The method is rapid and allows site specific labeling of both in vitro and in vivo synthesized RNA with a broad range of functional groups.  相似文献   

11.
An investigation was conducted to determine the affect of structural variation of biotin conjugates on their dissociation rates from Av and SAv. This information was sought to help identify optimal biotin derivatives for in vivo applications. Fifteen biotin derivatives were conjugated with a cyanocobalamin (CN-Cbl) derivative for evaluation of their "relative" dissociation rates by size exclusion HPLC analysis. Two biotin-CN-Cbl conjugates, one containing unaltered biotin and the other containing iminobiotin, were prepared as reference compounds for comparison purposes. The first structural variations studied involved modification of the biotinamide bond with a N-methyl moiety (i.e., sarcosine conjugate), lengthening the valeric acid side chain by a methylene unit (i.e., homobiotin), and replacing the biotinamide bond with thiourea bonds in two conjugates. The rate of dissociation of the biotin-CN-Cbl derivative from Av and SAv was significantly increased for biotin derivatives containing those structural features. Nine additional biotin conjugates were obtained by coupling amino acids or functional group protected amino acids to the biotin moiety. In the conjugates, the biotin moiety and biotinamide bond were not altered, but substituents of various sizes were introduced alpha to the biotinamide bond. The results obtained from HPLC analyses indicated that the rate of dissociation from Av or SAv was not affected by small substituents alpha to the biotinamide (e.g., methyl, hydroxymethyl, and carboxylate groups), but was significantly increased when larger functional groups were present. On the basis of the results obtained, it appears that biotin conjugates which retain an unmodified biotin moiety and have a linker molecule conjugated to it that has a small functional group (e.g., hydroxymethylene or carboxylate) alpha to the biotinamide bond are excellent candidates for in vivo applications. These structural features are obtained in the biotin amino acid conjugates: biotin-serine, biotin-aspartate, biotin-lysine, and biotin-cysteine. Importantly, these biotin derivatives can be readily conjugated with other molecules for specific in vivo applications. In our studies, these derivatives will be used in the design of new biotin conjugates to carry radionuclides for cancer therapy using the pretargeting approach.  相似文献   

12.
13.
RNA polymerase III transcription   总被引:2,自引:0,他引:2  
  相似文献   

14.
15.
16.
The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein–probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods.  相似文献   

17.
A series of novel nucleoside 5′-triphosphates and phosphoramidites containing alkyne or amino groups for the postsynthetic functionalization of nucleic acids were designed and synthesized. For this purpose, the new 3-aminopropoxypropynyl linker group was used. It contains two alternative functional capabilities: an amino group for the reaction of amino–alkynyl-modified oligonucleotides with corresponding activated esters and an alkyne group for the copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. It was shown that a variety of methods of the attachment of the new linker can be used to synthesize a diversity of modified pyrimidine nucleosides.  相似文献   

18.
19.
Oligoribonucleotides containing a 5'-phosphorothiolate linkage have provided effective tools to study the mechanisms of RNA catalysis, allowing resolution of kinetic ambiguity associated with mechanistic dissection and providing a strategy to establish linkage between catalysis and specific functional groups. However, challenges associated with their synthesis have limited wider application of these modified nucleic acids. Here, we describe a general semisynthetic strategy to obtain these oligoribonucleotides reliably and relatively efficiently. The approach begins with the chemical synthesis of an RNA dinucleotide containing the 5'-phosphorothiolate linkage, with the adjacent 2'-hydroxyl group protected as the photolabile 2'-O-o-nitrobenzyl or 2'-O-α-methyl-o-nitrobenzyl derivative. Enzymatic ligation of the 2'-protected dinucleotide to transcribed or chemically synthesized 5' and 3' flanking RNAs yields the full-length oligoribonucleotide. The photolabile protecting group increases the chemical stability of these highly activated oligoribonucleotides during synthesis and long-term storage but is easily removed with UV irradiation under neutral conditions, allowing immediate use of the modified RNA in biochemical experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号