首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed, for the first time, the effects of recombinant PON1 (rePON1) intraperitoneal injection to C??BL/6 mice on their HDL and macrophage antiatherogenic properties. Thioglycolate-treated mice were injected with either saline (Control), or rePON1 (50 μg/mouse), and 20 H post injection, their blood samples and peritoneal macrophages (MPM) were collected. A significant increase in serum and HDL-PON1 arylesterase and lactonase activities was noted. Similarly, a significant increment, by 3.8 and 2.8 fold, in MPM-PON1 arylesterase and lactonase activities, respectively, as compared to the activities in control MPM was observed. The HDL from rePON1-injected mice was resistant to oxidation by copper ions as compared to control HDL. Furthermore, enrichment of the mouse HDL with rePON1 increased its ability to induce cholesterol efflux from J774A.1 macrophage cell line, and to inhibit macrophage-mediated LDL oxidation. In MPM from rePON1-injected mice vs. control MPM, there was a significant reduction in cholesterol mass, by 42%, in association with inhibition in cellular cholesterol biosynthesis rate, by 33%, and with significant stimulation, by 65%, of human HDL-mediated cholesterol efflux from the cells. We conclude that rePON1 injection to mice improved the mice HDL and MPM antiatherogenic properties, and these effects could probably lead to attenuation of atherosclerosis development.  相似文献   

2.
Recent studies implied that low-density lipoprotein (LDL) modified predominantly by oxidation or glycation, significantly contributes to the formation of atherosclerotic lesions. In contrast to oxidized LDL (ox-LDL), high-density lipoprotein (HDL) is able to prevent accumulation of ox-LDL in arterial walls. This antiatherogenic property of HDL is attributed in part to several enzymes associated with the lipoprotein, including HDL-associated paraoxonase 1 (PON1). In this study we analyzed PON1 arylesterase/paraoxonase activities in relation to serum lipid profile, gender and age in thirty clinically healthy Slovak volunteers. Our results showed that PON1 arylesterase and paraoxonase activities were lower in citrated plasma than in serum by 16.6% and 27.3%, respectively. Among serum lipoproteins, only HDL-cholesterol level showed significant positive correlation with PON1 arylesterase activity (p = 0.042). Likewise, we found a significant relationship between atherogenic index (AI = total cholesterol/HDL-cholesterol) and PON1 arylesterase activity (p = 0.023). No significant correlation could be demonstrated between PON1 paraoxonase activity and serum lipid profile, age or gender. Furthermore, it was found that PON1 paraoxonase/arylesterase activities were higher in women compared with both investigated activities in men, but these differences were not statistically significant. These results confirmed a positive correlation between HDL-cholesterol and PON1 arylesterase activity. Moreover, it was found out that PON1 paraoxonase activity is not influenced either by gender or by age. PON1 arylesterase activity was however affected by gender to a limited extent.  相似文献   

3.
Human paraoxonase 1 (h‐PON1) hydrolyzes variety of substrates and the hydrolytic activities of enzyme can be broadly grouped into three categories; arylesterase, phosphotriesterase, and lactonase. Current models of the catalytic mechanism of h‐PON1 suggest that catalytic residues H115 and H134 mediate the lactonase and arylesterase activities of the enzyme. H‐PON1 is a strong candidate for the development of catalytic bioscavenger for organophosphate poisoning in humans. Recently, Gupta et al. (Nat. Chem. Biol. 2011. 7, 120) identified amino acid substitutions that significantly increased the activity of chimeric‐PON1 variant (4E9) against some organophosphate nerve agents. In this study we have examined the effect of these (L69G/S111T/H115W/H134R/R192K/F222S/T332S) and other substitutions (H115W/H134R and H115W/H134R/R192K) on the hydrolytic activities of recombinant h‐PON1 (rh‐PON1) variants. Our results show that the substitutions resulted in a significant increase in the organophosphatase activity of all the three variants of rh‐PON1 enzyme while had a variable effect on the lactonase/arylesterase activities. The results suggest that H residues at positions 115 and 134 are not always needed for the lactonase/arylesterase activities of h‐PON1 and force a reconsideration of the current model(s) of the catalytic mechanism of h‐PON1.  相似文献   

4.
Paraoxonase 1 (PON1) associates to specific high-density lipoproteins (HDLs)--those containing apolipoprotein A-I (apoA-I) and apolipoprotein J (apoJ)--and is largely responsible for their antiatherogenic properties. Caloric restriction (CR) has been shown to reduce major atherosclerotic risk factors. The aims of this work were to study PON1 activity response to CR (40% over 14 weeks) and to elucidate whether there are adaptive differences related to gender. Serum and liver paraoxonase and arylesterase activities, serum triglyceride, total and HDL cholesterol concentrations, serum PON1, apoA-I and apoJ contents and liver PON1 mRNA levels were measured. No effects of CR or gender were observed in triglyceride, total cholesterol concentration and PON1 mRNA levels. HDL cholesterol was higher in female rats than in male rats and increased with CR only in the latter animals. Serum PON1 activities tended to be higher in female rats and dropped with CR, with females showing the biggest decrease. Serum PON1 content was higher in female rats and decreased in both genders with CR, whereas apoA-I and apoJ contents, which were higher in female rats too, decreased only in the former animals, accounting for the high PON1 activity decrease observed in these animals. In conclusion, the short-term CR-associated reduction of serum PON1 activity and PON1, apoA-I and apoJ levels points toward a reduced stability of HDL-PON1 complexes and/or HDL particle levels responsible for PON1 transport and function in the blood. Moreover, the variations in PON1 activity and apolipoprotein levels show gender-related differences that are indicative of a different adaptive strategy of male and female rats when faced with a period of food restriction.  相似文献   

5.
Serum paraoxonase (PON1) is a lipolactonase that associates with HDL-apolipoprotein A-I (HDL-apoA-I) and thereby plays a role in the prevention of atherosclerosis. Current sera tests make use of promiscuous substrates and provide no indications regarding HDL-PON1 complex formation. We developed new enzymatic tests that detect total PON1 levels, irrespective of HDL status and R/Q polymorphism, as well as the degree of catalytic stimulation and increased stability that follow PON1's tight binding to HDL-apoA-I. The tests are based on measuring total PON1 levels with a fluorogenic phosphotriester, measuring the lipolactonase activity with a chromogenic lactone, and assaying the enzyme's chelator-mediated inactivation rate. The latter two are affected by tight HDL binding and thereby derive the levels of the serum PON1-HDL complex. We demonstrate these new tests with a group of healthy individuals (n=54) and show that the levels of PON1-HDL vary by a factor of 12. Whereas the traditionally applied paraoxonase and arylesterase tests weakly reflect PON1-HDL levels (R=0.64), the lipolactonase test provides better correlation (R=0.80). These new tests indicate the levels and activity of PON1 in a physiologically relevant context as well as the levels and quality of the HDL particles with which the enzyme is associated.  相似文献   

6.
Paraoxonase 1 (PON1) seems to have a relevant role in detoxifying processes and in atherosclerosis. The aim of this study was to determine PON1 activity, the total antioxidant capacity, as well as entire lipid profile in children for screening of possible risk of atherosclerosis development. Serum PON1 arylesterase/paraoxonase activities were determined spectrophotometrically. The total antioxidant capacity of the serum was measured by TEAC method. Parameters of lipid profile were analyzed by routine laboratory methods. It has been shown that PON1 arylesterase/ paraoxonase activities were very similar to values found in adults. In children, no significant correlation between PON1 arylesterase activity and HDL was observed. PON1 paraoxonase activity correlated only with atherogenic index. PON1 arylesterase activity was significantly higher in girls than in boys. The antioxidant capacity was inversely related to the body mass index. In this study, PON1 activity was determined in healthy children aged 11 to 12 years and we found a similarity in PON1 activities of children and adults. Moreover, the results of our study support the hypothesis that higher body weight of children may contribute to a greater risk for development of atherosclerosis in which oxidative stress plays a role.  相似文献   

7.
Autism spectrum disorders (ASD) comprise a complex and heterogeneous group of conditions of unknown aetiology, characterized by significant disturbances in social, communicative and behavioural functioning. Recent studies suggested a possible implication of the high-density lipoprotein associated esterase/lactonase paraoxonase 1 (PON1) in ASD. In the present study, we aimed at investigating the PON1 status in a group of 50 children with ASD as compared to healthy age and sex matched control participants. We evaluated PON1 bioavailability (i.e. arylesterase activity) and catalytic activity (i.e. paraoxonase activity) in plasma using spectrophotometric methods and the two common polymorphisms in the PON1 coding region (Q192R, L55M) by employing Light Cycler real-time PCR. We found that both PON1 arylesterase and PON1 paraoxonase activities were decreased in autistic patients (respectively, P < 0.001, P < 0.05), but no association with less active variants of the PON1 gene was found. The PON1 phenotype, inferred from the two-dimensional enzyme analysis, had a similar distribution in the ASD group and the control group. In conclusion, both the bioavailability and the catalytic activity of PON1 are impaired in ASD, despite no association with the Q192R and L55M polymorphisms in the PON1 gene and a normal distribution of the PON1 phenotype.  相似文献   

8.
Gaidukov L  Tawfik DS 《Biochemistry》2005,44(35):11843-11854
Serum paraoxonase (PON1) is a high-density lipoprotein (HDL)-associated enzyme exhibiting antiatherogenic properties. This study examined the interaction of recombinant PON1 with reconstituted HDL comprised of PC, cholesterol, and various apolipoproteins (apoA-I, -II, and -IV). The affinity, stability, and lactonase activity were strongly correlated, with apoA-I exhibiting the strongest effects, apoA-IV exhibiting weaker yet significant effects, and apoA-II having a negative effect relative to protein-free particles. We found that PON1 binds apoA-I HDL with sub-nanomolar affinities (K(d) < 10(-)(9) M) and slow dissociation rates (t(1/2) > 80 min), while binding affinity for other particles was dramatically lower. A truncated form of PON1 lacking the N-terminal helix maintains considerable binding to apoA-I HDL (K(d) = 1.2 x 10(-)(7) M), validating the structural model which indicates additional parts of the enzyme involved in HDL binding. Kinetic inactivation assays revealed the existence of an equilibrium between two forms of PON1 differing in their stability by a factor of 100. Various lipoproteins and detergent preparations shift this equilibrium toward the more stable conformation. Consistent with its highest affinity, only apoA-I HDL is capable of totally shifting the equilibrium toward the stable form. The paraoxonase and arylesterase activities were stimulated by HDL by 2-5-fold as previously reported, almost independently of the apoliporotein content. In contrast, only apoA-I is capable of stimulating the lactonase activity by 相似文献   

9.
Purified serum paraoxonase (PON1) had been shown to attenuate the oxidation of LDL in vitro. We critically reevaluated the antioxidant properties of serum PON1 in the in vitro assays initiated with copper or the free radical generator 2,2'-azobis-2-amidinopropane hydrochloride (AAPH). The antioxidant activity of different purified PON1 preparations did not correlate with their arylesterase (AE), lactonase, or phospholipase A2 activities or with the amounts of detergent or protein. Dialysis of three of these preparations resulted in a 30-40% loss of their AE activities but in a complete loss of their antioxidant activities. We also followed the distribution of the antioxidant activity during human serum PON1 purification by two purification methods. The antioxidant activity of the anion-exchange chromatography fractions did not copurify with PON1 using either method and could largely be accounted for by the "antioxidant" activity of the detergent present. In conclusion, using the copper or AAPH in vitro assays, no PON1-mediated antioxidant activity was detected, suggesting that the removal of PON1 from its natural environment may impair its antioxidative activity and that this assay with highly purified PON1 may be an inappropriate method with which to study the antioxidative properties of the enzyme.  相似文献   

10.
IntroductionParaoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated lactonase, which is known for its antiatherogenic properties. Previous studies in PON1 knockout (PON1KO) mice revealed that PON1KO mice have low blood pressure, which is inversely correlated with the renal levels of the cytochrome P450 -derived arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (5,6-EET). Our previous studies revealed that 5,6-EET is unstable, transforming to the δ-lactone isomer 5,6-δ-DHTL, an endothelium-derived hyperpolarizing factor (EDHF) that mediates vasodilation, and it is a potential substrate for PON1.AimTo elucidate the role of PON1 in the modulation of vascular resistance via the regulation of the lactone-containing metabolite 5,6-δ-DHTL.ResultsIn mouse resistance arteries, PON1 was found to be present and active in the endothelial layer. Vascular reactivity experiments revealed that 5,6-δ-DHTL dose-dependently dilates PON1KO mouse mesenteric arteries significantly more than wild type (w.t.) resistance arteries. Pre-incubation with HDL or rePON1 reduced 5,6-δ-DHTL-dependent vasodilation. FACS analyses and confocal microscopy experiments revealed that fluorescence-tagged rePON1 penetrates into human endothelial cells' (ECs') in both dose- and time- dependent manner, accumulate in the perinuclear compartment, and retains its lactonase activity in the cells. The presence of rePON1, but not the presence of PON1 loss-of-lactonase-activity mutant, reduced the Ca2+ influx in the ECs mediated by 5,6-δ-DHTL.ConclusionPON1 lactonase activity in the endothelium affects vascular dilation by regulating Ca2+ influx mediated by the lactone-containing EDHF 5,6-δ-DHTL.  相似文献   

11.
Transgenic mice overexpressing human apolipoprotein A-II (huapoA-II) display high VLDL and low HDL levels. To evaluate the antioxidant potential of huapoA-II enriched HDL, we measured the activities of paraoxonase (PON) and platelet-activating factor acetylhydrolase (PAF-AH). Both activities decreased up to 43% in the serum of transgenic mice compared with controls, varied in parallel to HDL levels, but decreased less than HDL levels. The major part of PON and PAF-AH was associated with HDL, except in fed high huapoA-II-expressing mice, in which 20% of PAF-AH and 9% of PON activities were associated with VLDL. PON mRNA levels in the liver, its major site of synthesis, were similar in transgenic and control animals, indicating normal enzyme synthesis. In transgenic mice, the basal oxidation of lipoproteins was not increased, whereas their VLDL were more susceptible to oxidation than VLDL of controls. Interestingly, HDL of transgenic mice protected VLDL from oxidation more efficiently than HDL of controls. In conclusion, the decrease in both PON and PAF-AH activities in huapoA-II transgenic mice is best explained by their lower plasma HDL levels. However, the unchanged basal lipoprotein oxidation in transgenic mice suggests that huapoA-II-rich HDL may maintain adequate antioxidant potential.  相似文献   

12.
Paraoxonase (PON) constitutes a family of calcium-dependent mammalian enzymes comprising of PON1, PON2, and PON3. PON family shares ~60% sequence homology. These enzymes exhibit multiple activities like paraoxonase, arylesterase, and lactonase in a substrate dependent manner. Decreased PON activity has been reported in diseases like cardiovascular disease, atherosclerosis, and diabetes. Even though, PON2 is the oldest member of the family, PON1 is the only member studied in silico. In this study, the structure of PON2 was modeled using MODELLER 9v7 and its interactions with relevant ligands and it's physiological substrate homocysteine thiolactone was performed using AutoDock 4.0. The results reveal that PON1 and PON2 share common ligand binding patterns for arylesterase and lactonase activity, whereas in case of paraoxon binding, the residues involved in the interactions were different. Interestingly, the substrate HCTL was found to have the lowest free energy of binding (ΔG) and highest affinity for PON2 than PON1.  相似文献   

13.
Reduced activity of paraoxonase 1 (PON1), a high-density lipoprotein (HDL)-associated enzyme, has been implicated in the development of atherosclerosis. Post-translational modifications of PON1 may represent important mechanisms leading to reduced PON1 activity. Under atherosclerotic conditions, myeloperoxidase (MPO) is known to associate with HDL. MPO generates the oxidants hypochlorous acid and nitrogen dioxide, which can lead to post-translational modification of PON1, including tyrosine modifications that inhibit PON1 activity. Nitrogen dioxide also drives lipid peroxidation, leading to the formation of reactive lipid dicarbonyls such as malondialdehyde and isolevuglandins, which modify HDL and could inhibit PON1 activity. Because isolevuglandins are more reactive than malondialdehyde, we used in vitro models containing HDL, PON1, and MPO to test the hypothesis that IsoLG formation by MPO and its subsequent modification of HDL contributes to MPO-mediated reductions in PON1 activity. Incubation of MPO with HDL led to modification of HDL proteins, including PON1, by IsoLG. Incubation of HDL with IsoLG reduced PON1 lactonase and antiperoxidation activities. IsoLG modification of recombinant PON1 markedly inhibited its activity, while irreversible IsoLG modification of HDL before adding recombinant PON1 only slightly inhibited the ability of HDL to enhance the catalytic activity of recombinant PON1. Together, these studies support the notion that association of MPO with HDL leads to lower PON1 activity in part via IsoLG-mediated modification of PON1, so that IsoLG modification of PON1 could contribute to increased risk for atherosclerosis, and blocking this modification might prove beneficial to reduce atherosclerosis.  相似文献   

14.
To determine the causes responsible for a preferential decrease of paraoxonase activity, which has been observed in the serum of patients with cardiovascular diseases, the inactivation or inhibition of paraoxonase 1 (PON1) by various endogenous factors was examined using paraoxon or phenyl acetate as a substrate. When purified PON1 was incubated with various endogenous oxidants or aldehydes, they failed to cause a preferential reduction of paraoxonase activity, suggesting no participation of the inactivation mechanism in the preferential loss of paraoxonase activity. Next, when we examined the inhibition of PON1 activity by endogenous lipids, monoenoic acids such as palmitoleic acid or oleic acid inhibited paraoxonase activity preferentially, in contrast to a parallel inhibition of both activities by polyunsaturated or saturated acids. Noteworthy, oleoylglycine inhibited paraoxonase activity, but not arylesterase activity, complying with the selective inhibition of paraoxonase activity. Moreover, such a selective inhibition of paraoxonase activity was also expressed by lysophosphatidylglycerol or lysophosphatidylinositol, but not by lysophosphatidylserine or lysophosphatidylcholine, indicating the importance of the type of head group. Furthermore, such a preferential or selective inhibition of paraoxonase activity was also observed with PON1 associated with HDL or plasma. These data suggest that some negatively charged lipids may correspond to factors causing the preferential inhibition of paraoxonase activity of PON1.  相似文献   

15.
Human carotid atherosclerotic plaque is in direct contact with circulatory blood components. Thus, plaque and blood components may affect each other. The current study presents the effects of plaque chloroform:methanol (C:M) extract on the HDL-associated enzyme paraoxnase 1 (PON1). This study is part of our investigation on the mutual effects of the interactions between atherosclerotic lesions and blood components. Recombinant PON1 (rePON1) was incubated with the human carotid plaques C:M extract and PON1 activities were analyzed. Lactonase and paraoxonase activities were elevated due to C:M treatment, by 140 and by 69%, respectively. Analytical chemistry analyses revealed specific phosphatidylcholines (PCs) as the plaque active components. Tryptophan fluorescence quenching assay, together with molecular docking, shows that PON1 activity is enhanced in correlation with the level of PC affinity to PON1. Molecular docking revealed that PCs interact specifically with H2-PON1 α-helix, which together with H1 enzyme α-helix links the protein to the HDL surface. These findings are supported by additional results from the PON1 ∆20 mutant that lack its H1-α-helix. Incubation of this mutant with the plaque C:M extract increased PON1 activity by only 20%, much less than the wild-type PON1 that elevated PON1 activity at the same concentration by as much as 95%. Furthermore, as much as the affinity of the enzyme to the PC was augmented, the ability of PON1 to bind to the HDL particle decreased. Finally, PON1 interaction with PC enhance its uptake into the macrophage cytoplasm. In conclusions, Specific lesion phosphatidylcholines (PCs) present in the human carotid plaque significantly enhance PON1 catalytic activities due to their interaction with the enzyme. Such a lesion׳s PC–PON1 interaction, in turn, competes with HDL PCs and enhances PON1 uptake by macrophage at the expense of PON1 binding to the HDL.  相似文献   

16.
The 5.5 Mb chromosome 7q21-22 ACHE/PON1 locus harbours the ACHE gene encoding the acetylcholine hydrolyzing, organophosphate (OP)-inhibitable acetylcholinesterase protein and the paraoxonase gene PON1, yielding the OP-hydrolyzing PON1 enzyme which also displays arylesterase activity. In search of inherited and acquired ACHE-PON1 interactions we genotyped seven polymorphic sites and determined the hydrolytic activities of the corresponding plasma enzymes and of the AChE-homologous butyrylcholinesetrase (BChE) in 157 healthy Israelis. AChE, arylesterase, BChE and paraoxonase activities in plasma displayed 5.4-, 6.5-, 7.2- and 15.5-fold variability, respectively, with genotype-specific differences between carriers of distinct compound polymorphisms. AChE, BChE and arylesterase but not paraoxonase activity increased with age, depending on leucine at PON1 position 55. In contrast, carriers of PON1 M55 displayed decreased arylesterase activity independent of the - 108 promoter polymorphism. Predicted structural consequences of the PON1 L55M substitution demonstrated spatial shifts in adjacent residues. Molecular modelling showed substrate interactions with the enzyme variants, explaining the changes in substrate specificity induced by the Q192R substitution. Intriguingly, PON1, but not BChE or arylesterase, activities displayed inverse association with AChE activity. Our findings demonstrate that polymorphism(s) in the adjacent PON1 and ACHE genes affect each other's expression, predicting for carriers of biochemically debilitating ACHE/PON1 polymorphisms adverse genome-environment interactions.  相似文献   

17.
To examine the effect of phospholipids on PON1 activities, purified PON1 was exposed to phospholipids prior to the determination of arylesterase and paraoxonase activities. Phosphatidylcholines with saturated acyl chains (C10-C16) showed a stimulation of both activities, chain length-dependent, with a greater stimulation of arylesterase activity, suggesting the implication of lipid bilayer in the stimulatory action. Such a preferable stimulation of arylesterase activity was more remarkable with phosphatidylcholines with polyunsaturated acyl chains or oxidized chains at sn-2 position, implying that the packing degree of acyl chain may be also important for the preferable stimulation of arylesterase activity. Separately, 1-palmitoyl-lysoPC also stimulated arylesterase activity preferably, indicating that the micellar formation of lipids around PON1 also contributes to the stimulatory action. Additionally, phosphatidylglycerols slightly enhanced arylesterase activity, but not paraoxonase activity. In contrast, phosphatidylserine and phosphatidic acid (> or =0.1 mM) inhibited both activities Further, such a preferable stimulation of arylesterase activity by phosphatidylcholines was also reproduced with VLDL-bound PON1, although to a less extent. These data indicate that phosphatidylcholines with polyunsaturated acyl chains or oxidized chain, or lysophosphatidylcholine cause a preferable stimulation of arylesterase activity, thereby contributing to the decrease in the ratio of paraoxonase activity to arylesterase activity.  相似文献   

18.
Genetic variations of paraoxonase (PON) correlate with HDL cholesterol and apolipoprotein A-I (apoA-I), suggesting antiatherogenic properties. Atherosclerosis occurs naturally in humans and rabbits but not in mice. We compared variations of PON arylesterase activity (PON AEase, phenylacetate substrate) in humans, rabbits, and mice. In humans and rabbits, >95% of PON AEase is HDL associated. In mice, about 30% of PON AEase is lipid poor. In the absence of apoA-I in mice, total PON AEase is reduced and >60% is lipid poor. PON AEase level and distribution is restored in apoA-I-/- mice injected with adenoviruses encoding human apoA-I and in transgenic mice expressing human apoA-I at a steady-state level. Thus, while apoA-I is not required for the HDL association of PON AEase, induced variations in apoA-I correlate with changes in HDL-associated, but not lipid-poor, PON AEase. PON AEase associates only with apoA-I- or apoE-containing HDL but not VLDL. In the absence of both apoA-I and apoE, PON AEase is all-lipid-poor. PON AEase is displaced from HDL by ultracentrifugation and following incubation with serum amyloid A. Variations in the PON distribution between HDL and lipid-poor fractions may have important consequences in its antioxidant activity and in atherogenesis.  相似文献   

19.
Human serum paraoxonase 1 (hPON1) belongs to a family of enzymes that catalyze the hydrolysis of a broad range of esters and lactones. Although the very first identification of hPON1 might have been as a calcium-dependent paraoxonase/arylesterase, PON1 is in fact a lactonase associated with high-density lipoprotein and strongly stimulated by apoA-I. PON1 hydrolyzes various organophosphates, including insecticides and nerve gases. PON1 also plays a key role in prevention of atherosclerosis. Mediation of cholesterol efflux from macrophage is a key in vivo function of PON1. In present study, the hPON1 Q gene was cloned into baculovirus transfer vector pVL1392 and expressed in silkworm expression system. The rhPON1 Q presented two bands with every near molecular weight of about 40 and 43 kDa according to sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting analysis. The expression level was up to 1,256 mg/L in haemolymph, about 50 times as high as that from BmN cells (24.8 mg/L). After purified by two chromatography steps (DEAE-Sepharose and HiTrap Chelating HP), the purity of rhPON1 Q was up to 90%, and the enzymatic properties are similar to serum hPON1.  相似文献   

20.
To examine the effect of phospholipids on PON1 activities, purified PON1 was exposed to phospholipids prior to the determination of arylesterase and paraoxonase activities. Phosphatidylcholines with saturated acyl chains (C10-C16) showed a stimulation of both activities, chain length-dependent, with a greater stimulation of arylesterase activity, suggesting the implication of lipid bilayer in the stimulatory action. Such a preferable stimulation of arylesterase activity was more remarkable with phosphatidylcholines with polyunsaturated acyl chains or oxidized chains at sn-2 position, implying that the packing degree of acyl chain may be also important for the preferable stimulation of arylesterase activity. Separately, 1-palmitoyl-lysoPC also stimulated arylesterase activity preferably, indicating that the micellar formation of lipids around PON1 also contributes to the stimulatory action. Additionally, phosphatidylglycerols slightly enhanced arylesterase activity, but not paraoxonase activity. In contrast, phosphatidylserine and phosphatidic acid (≥0.1 mM) inhibited both activities Further, such a preferable stimulation of arylesterase activity by phosphatidylcholines was also reproduced with VLDL-bound PON1, although to a less extent. These data indicate that phosphatidylcholines with polyunsaturated acyl chains or oxidized chain, or lysophosphatidylcholine cause a preferable stimulation of arylesterase activity, thereby contributing to the decrease in the ratio of paraoxonase activity to arylesterase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号