首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a rice gene encoding a DNA-binding protein that specifically recognizes the telomeric repeat sequence TTTAGGG found in plants. This gene, which we refer to as RTBP1 (rice telomere-binding protein 1), encodes a polypeptide with a predicted molecular mass of 70 kDa. RTBP1 is ubiquitously expressed in various organs and binds DNA with two or more duplex TTTAGGG repeats. The predicted protein sequence includes a single domain at the C terminus with extensive homology to Myb-like DNA binding motif. The Myb-like domain of RTBP1 is very closely related to that of other telomere-binding proteins, including TRF1, TRF2, Taz1p, and Tbf1p, indicating that DNA-binding domains of telomere-binding proteins are well conserved among evolutionarily distant species. To obtain precise information on the sequence of the DNA binding site recognized by RTBP1, we analyzed the sequence-specific binding properties of the isolated Myb-like domain of RTBP1. The isolated Myb-like domain was capable of sequence-specific DNA binding as a homodimer. Gel retardation analysis with a series of mutated telomere probes revealed that the internal GGGTTT sequence in the two-telomere repeats is critical for binding of Myb-like domain of RTBP1, which is consistent with the model of the TRF1.DNA complex showing that base-specific contacts are made within the sequence GGGTTA. To the best of our knowledge, RTBP1 is the first cloned gene in which the product is able to bind double-stranded telomeric DNA in plants. Because the Myb-like domain appears to be a significant motif for a large class of proteins that bind the duplex telomeric DNA, RTBP1 may play important roles in plant telomere function in vivo.  相似文献   

2.
Sequence-specific DNA recognition by polyamides   总被引:12,自引:0,他引:12  
  相似文献   

3.
The high mobility group box (HMGB) 1 protein, one of the most abundant nuclear non-histone proteins has been known for its inhibitory effect on repair of DNA damaged by the antitumor drug cisplatin. Here, we report the first results that link HMGB1 to repair of cisplatin-treated DNA at nucleosome level. Experiments were carried out with three types of reconstituted nucleosomes strongly positioned on the damaged DNA: linker DNA containing nucleosomes (centrally and end-positioned) and core particles. The highest repair synthesis was registered with end-positioned nucleosomes, two and three times more efficient than that with centrally positioned nucleosomes and core particles, respectively. HMGB1 inhibited repair of linker DNA containing nucleosomes more efficiently than that of core particles. Just the opposite was the effect of the in vivo acetylated HMGB1: stronger repair inhibition was obtained with core particles. No inhibition was observed with HMGB1 lacking the acidic tail. Binding of HMGB1 proteins to different nucleosomes was also analysed. HMGB1 bound preferentially to damage nucleosomes containing linker DNA, while the binding of the acetylated protein was linker independent. We show that both the repair of cisplatin-damaged nucleosomes and its inhibition by HMGB1 are nucleosome position-dependent events which are accomplished via the acidic tail and modulated by acetylation.  相似文献   

4.
Evidence for involvement of HMGB1 protein in human DNA mismatch repair   总被引:9,自引:0,他引:9  
Defects in human DNA mismatch repair predispose to cancer, but many components of the pathway have not been identified. We report here the identification and characterization of a novel component required for mismatch repair in human cells. A 30-kDa protein was purified to homogeneity by virtue of its ability to complement a depleted HeLa extract in repair of mismatched heteroduplexes. The complementing activity was identified as HMGB1 (the high mobility group box 1 protein), a non-histone chromatin protein that facilitates protein-protein interactions and recognizes DNA damage. Evidence is also presented that HMGB1 physically interacts with MutSalpha and is required at a step prior to the excision of mispaired nucleotide in mismatch repair.  相似文献   

5.
6.
A chiral template with C2 symmetry has been used for modeling a dimeric interface of DNA binding protein. An oligopeptide derived from the basic region of MyoD, a recently described "helix-loop-helix" class of DNA binding protein, has been tethered to the template. Among the four models which differ in chirality and polarity with respect to the arrangement of two subunits, only one dimer model with right-handed and C-terminus to C-terminus arrangement of the peptide subunits binds DNA containing native MyoD binding sequence.  相似文献   

7.
8.
Recognition of new DNA nucleotide excision repair (NER) substrate analogs, 48-mer ddsDNA (damaged double-stranded DNA), by human replication protein A (hRPA) has been analyzed using fluorescence spectroscopy and photoaffinity modification. The aim of the present work was to find quantitative characteristics of RPA-ddsDNA interaction and RPA subunits role in this process. The designed DNA structures bear bulky substituted pyrimidine nitrogen bases at the inner positions of duplex forming DNA chains. The photoreactive 4-azido-2,5-difluoro-3- pyridin-6-yl (FAP) and fluorescent antracenyl, pyrenyl (Antr, Pyr) groups were introduced via different linker fragments into exo-4N of deoxycytidine or 5C of deoxyuridine. J-dU-containing DNA was used as a photoactive model of undamaged DNA strands. The reporter group was a fluorescein residue, introduced into the 5'-phosphate end of one duplex-forming DNA strand. RPA-dsDNA association constants and the molar RPA/dsDNA ratio have been calculated based on fluorescence anisotropy measurements under conditions of a 1:1 RPA/dsDNA molar ratio in complexes. The evident preference for RPA binding to ddsDNA over undamaged dsDNA distinctly depends on the adduct type and varies in the following way: undamaged dsDNA < Antr-dC-ddsDNA < mmdsDNA < FAPdU-, Pyr-dU-ddsDNA < FAP-dC-ddsDNA (K(D) = 68 +/- 1; 25 +/- 6; 13 +/- 1; 8 +/- 2, and 3.5 +/- 0.5 nM correspondingly) but weakly depends on the chain integrity. Interestingly the bulkier lesions not in all cases have a greater effect on RPA affinity to ddsDNA. The experiments on photoaffinity modification demonstrated only p70 of compactly arranged RPA directly interacting with dsDNA. The formation of RPA-ddsDNA covalent adducts was drastically reduced when both strands of DNA duplex contained virtually opposite located FAP-dC and Antr-dC. Thus RPA requires undamaged DNA strand presence for the effective interaction with dsDNA bearing bulky damages and demonstrates the early NER factors characteristic features underlying strand discrimination capacity and poor activity of the NER system toward double damaged DNA.  相似文献   

9.
10.
HMGB1 is a cofactor in mammalian base excision repair   总被引:4,自引:0,他引:4  
Deoxyribose phosphate (dRP) removal by DNA polymerase beta (Pol beta) is a pivotal step in base excision repair (BER). To identify BER cofactors, especially those with dRP lyase activity, we used a Pol beta null cell extract and BER intermediate as bait for sodium borohydride crosslinking. Mass spectrometry identified the high-mobility group box 1 protein (HMGB1) as specifically interacting with the BER intermediate. Purified HMGB1 was found to have weak dRP lyase activity and to stimulate AP endonuclease and FEN1 activities on BER substrates. Coimmunoprecipitation experiments revealed interactions of HMGB1 with known BER enzymes, and GFP-tagged HMGB1 was found to accumulate at sites of oxidative DNA damage in living cells. HMGB1(-/-) mouse cells were slightly more resistant to MMS than wild-type cells, probably due to the production of fewer strand-break BER intermediates. The results suggest HMGB1 is a BER cofactor capable of modulating BER capacity in cells.  相似文献   

11.
High mobility group box chromosomal protein 1 (HMGB1) is a lethal mediator of systemic inflammation, and its A box domain is isolated as an antagonist of HMGB1. To enhance its expression level and its anti-HMGB1 effect, the A box cDNA was coupled with the sequence encoding lectin-like domain of thrombomodulin (TMD1). The fusion DNA fragment was ligated into the prokaryotic expression vector pQE-80L to construct the recombinant plasmid pQE80L-A/TMD1. The plasmid was then transformed into Escherichia coli DH5α, and the recombinant fusion protein A/TMD1 was expressed at 37°C for 4 h, with induction by IPTG at the final concentration of 0.2 mM. The expression level of the fusion protein was up to 40% of the total cellular protein. The fusion protein was purified by Ni-NTA chromatography and the purity was about 95%. After passing over a polymyxin B column to remove any contaminating lipopolysaccharides, the purified protein was tested for its anti-inflammatory activity. Our data show that A/TMD1 significantly inhibits HMGB1-induced TNF-α release and might be useful in treating HMGB1-elevated sepsis.  相似文献   

12.
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.  相似文献   

13.
P Knig  L Fairall    D Rhodes 《Nucleic acids research》1998,26(7):1731-1740
Telomeres consist of tandem arrays of short G-rich sequence motifs packaged by specific DNA binding proteins. In humans the double-stranded telomeric TTAGGG repeats are specifically bound by TRF1 and TRF2. Although telomere binding proteins from evolutionarily distant species are not sequence homologues, they share a Myb-like DNA binding motif. Here we have used gel retardation, primer extension and DNase I footprinting analyses to define the binding site of the isolated Myb-like domain of TRF1 and present a three-dimensional model for its interaction with human telomeric DNA. Our results suggest that the Myb-like domain of TRF1 recognizes a binding site centred on the sequence GGGTTA and that its DNA binding mode is similar to that of the homeodomain-like motifs of the yeast telomere binding protein RAP1. The implications of these findings for recognition of telomeric DNA in general are discussed.  相似文献   

14.
Aminoglycoside antibiotics specifically interact with a variety of RNA sequences, and in particular with the decoding region of 16S ribosomal RNA in the aminoacyl tRNA acceptor site (A-site). Ring II of aminoglycosides (2-deoxystreptamine) is the most conserved element among aminoglycoside antibiotics that bind to the A-site. NMR structures of aminoglycoside-A-site RNA complexes suggested that the 2-deoxystreptamine core of aminoglycosides specifically recognizes (5')G-U(3') and potentially (5')G-G(3') or (5')U-G(3') steps in the major groove of RNA. Here, we show that isolated deoxystreptamine specifically interacts with G-U steps within the major groove of the A-site RNA. The bulge residue of A-site RNA is required to open the major groove for accommodation of deoxystreptamine. The chemical groups of deoxystreptamine presented to the RNA by the framework of the 6-carbon ring modulate RNA recognition.  相似文献   

15.
16.
The ability of DNA-binding proteins to recognize their cognate sites in chromatin is restricted by the structure and dynamics of nucleosomal DNA, and by the translational and rotational positioning of the histone octamer. Here, we use six different pyrrole-imidazole polyamides as sequence-specific molecular probes for DNA accessibility in nucleosomes. We show that sites on nucleosomal DNA facing away from the histone octamer, or even partially facing the histone octamer, are fully accessible and that nucleosomes remain fully folded upon ligand binding. Polyamides only failed to bind where sites are completely blocked by interactions with the histone octamer. Removal of the amino-terminal tails of either histone H3 or histone H4 allowed these polyamides to bind. These results demonstrate that much of the DNA in the nucleosome is freely accessible for molecular recognition in the minor groove, and also support a role for the amino-terminal tails of H3 and H4 in modulating accessibility of nucleosomal DNA.  相似文献   

17.
Pierisin-1, a cytotoxic protein from the cabbage butterfly (Pieris rapae), induces apoptosis in mammalian cell lines. Binding of its C-terminal region to glycosphingolipid Gb3 and Gb4 receptors on cell membrane is necessary for incorporation into cells, while the N-terminal polypeptide catalyzes transfer of the ADP-ribose moiety of NAD at N2 of dG in DNA. Resulting DNA adducts cause mutation if they are present at low levels. If the DNA damage is more severe, the cells undergo apoptosis. In the present study, we examined the repair system for ADP-ribosylated dG adducts using nucleotide excision repair (NER) mutants of Chinese hamster ovary (CHO) cell lines. Pierisin-1 showed cytotoxic effects in all cases: IC50 values of them were; 650 ng/ml for AA8 (wild), 230 ng/ml for UV5, 190 ng/ml for UV20, 260 ng/ml for UV41, and 240 ng/ml for UV135. Thus, wild-type AA8 proved most resistant to pierisin-1-induced cytotoxicity. When these CHO cell lines were treated with pierisin-1, the adduct levels of ADP-ribosylated dG increased to 2.5-4.8/10(5) nucleotides time-dependently in all cell lines at 12 h. After removal of pierisin-1, the adduct levels remained constant or increased to 4-14/10(5) nucleotides in all NER mutant cells (UV5, UV20, UV41, UV135), while those rapidly decreased to 0.27/10(5) nucleotides in the repair proficient AA8 cells for 24 h. From these results, it is suggested that the NER system is involved in the repair of ADP-ribosylated dG adducts in DNA.  相似文献   

18.
《Autophagy》2013,9(8):1181-1183
Metabolic and therapeutic stress activates several signal transduction pathways and releases damageassociated molecular pattern molecules (DAMPs) that regulate cell death and cell survival. The prototypical DAMP, high-mobility group box 1 protein (HMGB1) is released with sustained autophagy, late apoptosis and necrosis. Our recent findings reveal that the HMGB1 protein triggers autophagy or apoptosis in cancer cells, depending on its redox status. Reducible HMGB1 binds to the receptor for advanced glycation end products (RAGE), induces Beclin 1-dependent autophagy and promotes pancreatic or colon tumor cell line resistance to chemotherapeutic agents or ionizing radiation. In contrast, oxidized HMGB1 increases the cytotoxicity of these agents and induces apoptosis via the mitochondrial pathway. This suggests a new function for HMGB1 within the tumor microenvironment, regulating cell death and survival and suggests that it plays an important functional role in cross-regulating apoptosis and autophagy.  相似文献   

19.
Kang R  Livesey KM  Zeh HJ  Loze MT  Tang D 《Autophagy》2010,6(8):1209-1211
The autophagosome delivers damaged cytoplasmic constituents and proteins to the lysosome or to the extracellular space. Beclin 1, an essential: autophagic protein, is a BH3-only protein that binds Bcl-2 anti-apoptotic family members and has a critical role in the initiation of autophagy. How the Beclin 1 complex specifically promotes autophagy remains largely unknown. We have found that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is a novel Beclin 1-binding protein important in sustaining autophagy. HMGB1 shares considerable sequence homology with Beclin 1 in yeast, mice and human, representing an evolutionarily conserved regulatory step in early autophagosome formation. Endogenous HMGB1 competes with Bcl-2 for interaction with Beclin 1, and orients Beclin 1 to autophagosomes. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin 1 and sustaining autophagy. Taken together, these findings indicate that endogenous HMGB1 functions as an autophagy effector by regulation of autophagosome formation.  相似文献   

20.
Colicin E5 is a novel Escherichia coli ribonuclease that specifically cleaves the anticodons of tRNATyr, tRNAHis, tRNAAsn and tRNAAsp. Since this activity is confined to its 115 amino acid long C-terminal domain (CRD), the recognition mechanism of E5-CRD is of great interest. The four tRNA substrates share the unique sequence UQU within their anticodon loops, and are cleaved between Q (modified base of G) and 3′ U. Synthetic minihelix RNAs corresponding to the substrate tRNAs were completely susceptible to E5-CRD and were cleaved in the same manner as the authentic tRNAs. The specificity determinant for E5-CRD was YGUN at −1 to +3 of the ‘anticodon’. The YGU is absolutely required and the extent of susceptibility of minihelices depends on N (third letter of the anticodon) in the order A > C > G > U accounting for the order of susceptibility tRNATyr > tRNAAsp > tRNAHis, tRNAAsn. Contrastingly, we showed that GpUp is the minimal substrate strictly retaining specificity to E5-CRD. The effect of contiguous nucleotides is inconsistent between the loop and linear RNAs, suggesting that nucleotide extension on each side of GpUp introduces a structural constraint, which is reduced by a specific loop structure formation that includes a 5′ pyrimidine and 3′ A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号