首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA-reactive B cells play a central role in systemic lupus erythematosus (SLE); DNA antibodies precede clinical disease and in established disease correlate with renal inflammation and contribute to dendritic cell activation and high levels of type 1 interferon. A number of central and peripheral B cell tolerance mechanisms designed to control the survival, differentiation and activation of autoreactive B cells are thought to be disturbed in patients with SLE. The characterization of DNA-reactive B cells has, however, been limited by their low frequency in peripheral blood. Using a tetrameric configuration of a peptide mimetope of DNA bound by pathogenic anti-DNA antibodies, we can identify B cells producing potentially pathogenic DNA-reactive antibodies. We, therefore, characterized the maturation and differentiation states of peptide, (ds) double stranded DNA cross-reactive B cells in the peripheral blood of lupus patients and correlated these with clinical disease activity. Flow cytometric analysis demonstrated a significantly higher frequency of tetramer-binding B cells in SLE patients compared to healthy controls. We demonstrated the existence of a novel tolerance checkpoint at the transition of antigen-naïve to antigen-experienced. We further demonstrate that patients with moderately active disease have more autoreactive B cells in both the antigen-naïve and antigen-experienced compartments consistent with greater impairment in B cell tolerance in both early and late checkpoints in these patients than in patients with quiescent disease. This methodology enables us to gain insight into the development and fate of DNA-reactive B cells in individual patients with SLE and paves the way ultimately to permit better and more customized therapies.  相似文献   

2.
Systemic lupus erythematosus (SLE) is a complex disease characterized by the appearance of autoantibodies against nuclear antigens and the involvement of multiple organ systems, including the kidneys. The precise immunological events that trigger the onset of clinical manifestations of SLE are not yet well understood. However, research using various mouse strains of spontaneous and inducible lupus in the last two decades has provided insights into the role of the immune system in the pathogenesis of this disease. According to our present understanding, the immunological defects resulting in the development of SLE can be categorized into two phases: (a) systemic autoimmunity resulting in increased serum antinuclear and antiglomerular autoantibodies and (b) immunological events that occur within the target organ and result in end organ damage. Aberrations in the innate as well as adaptive arms of the immune system both play an important role in the genesis and progression of lupus. Here, we will review the present understanding - as garnered from studying mouse models - about the roles of various immune cells in lupus pathogenesis.  相似文献   

3.
The initial events predisposing to loss of tolerance in patients with systemic lupus erythematosus (SLE) are largely unknown, as are the events that precipitate the transition from preclinical to overt disease. We hypothesized that induction of murine SLE would require tipping the balance between tolerance and immunity in two ways: 1) an immunogen that could take advantage of apoptotic cells as a scaffold for epitope spread, and 2) an immune activator that would generate a strong and persistent T cell response to the inciting immunogen. We show that immunization of C57BL/6 and BALB/c mice with human beta(2)-glycoprotein I, an apoptotic cell-binding protein, in the presence of LPS induces a long-lived, potent response to beta(2)-glycoprotein I that results in epitope spread to multiple SLE autoantigens. SLE-specific autoantibodies emerged in a sequential manner that recapitulated the order seen in human SLE. Moreover, immunized mice developed overt glomerulonephritis closely resembling human lupus nephritis.  相似文献   

4.
Systemic lupus erythematosus (SLE) is the prototype of a cluster of diseases that are characterized by a loss of self tolerance and chronic inflammation in organs including skin, kidney, brain and joints. Researchers have long debated the varying contributions of the components of the immune system to the pathogenesis of SLE, but the emigration of leucocytes from the microcirculation, and the subsequent tissue inflammation mediated by these inflammatory cells, are key features of chronic inflammation seen in SLE. Macrophage migration inhibitory factor (MIF) is a broad-spectrum pro-inflammatory cytokine. We hypothesize that MIF is an important inflammatory mediator in the perpetuation of immune activation in SLE, via its effects on activation of T and B cells, and endothelial and effector cells. As MIF exerts anti-apoptotic effects, it may also play a role in promoting abnormal survival of autoreactive lymphocytes, thus perpetuating autoimmune reactivity. In addition, MIF has a unique relationship with glucocorticoids, in that MIF can override the effects of glucocorticoids and may be important in steroid resistance. By virtue of its pluripotent functions, we propose that MIF may be a critical mediator of inflammation and damage in SLE, and that targeting of MIF may offer therapeutic benefits in this disease.  相似文献   

5.

Background

Deficiency in clearance of self nuclear antigens, including DNA, is the hallmark of systemic lupus erythematosus (SLE), a chronic autoimmnue disease characterized by the production of various autoantibodies, immune complex deposition and severe organ damage. Our previous studies revealed that administration of syngeneic BALB/c mice with activated lymphocyte-derived DNA (ALD-DNA) could induce SLE disease. Mannose-binding lectin (MBL), a secreted pattern recognition receptor with binding activity to DNA, has been proved to be a modulator of inflammation, but whether MBL takes responsibility for DNA clearance, modulates the DNA-mediated immune responses, and is involved in the development of DNA-induced SLE disease remain poorly understood.

Methodology/Principal Findings

The levels of serum MBL significantly decreased in lupus mice induced by ALD-DNA and were negatively correlated with SLE disease. MBL blunted macrophage M2b polarization by inhibiting the MAPK and NF-κB signaling while enhancing the activation of CREB. Furthermore, MBL suppressed the ability of ALD-DNA–stimulated macrophages to polarize T cells toward Th1 cells and Th17 cells. Importantly, MBL supplement in vivo could ameliorate lupus nephritis.

Conclusion/Significance

These results suggest MBL supplement could alleviate SLE disease and might imply a potential therapeutic strategy for DNA-induced SLE, which would further our understanding of the protective role of MBL in SLE disease.  相似文献   

6.
The nucleosome is a major autoantigen in systemic lupus erythematosus (SLE); it can be detected as a circulating complex in the serum, and nucleosomes have been suggested to play a key role in disease development. In the present study, we show for the first time that physiological concentrations of purified nucleosomes trigger innate immunity. The nucleosomes are endocytosed and induce the direct activation of human neutrophils (polymorphonuclear leukocytes (PMN)) as revealed by CD11b/CD66b up-regulation, IL-8 secretion, and increased phagocytic activity. IL-8 is a neutrophil chemoattractant detected in high concentrations in the sera of patients, and IL-8 secretion might thus result in enhanced inflammation, as observed in lupus patients, via an amplification loop. Nucleosomes act as free complexes requiring no immune complex formation and independently of the presence of unmethylated CpG DNA motifs. Both normal and lupus neutrophils are sensitive to nucleosome-induced activation, and activation is not due to endotoxin or high-mobility group box 1 contamination. In mice, i.p. injection of purified nucleosomes induces neutrophil activation and recruitment in a TLR2/TLR4-independent manner. Importantly, neutrophils have been suggested to link innate and adaptive immunity. Thus, nucleosomes trigger a previously unknown pathway of innate immunity, which may partially explain why peripheral tolerance is broken in SLE patients.  相似文献   

7.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with diverse manifestations. Although the approval of new therapies includes only one agent in 50 years, a number of promising new drugs are in development. Lupus nephritis is a dreaded complication of SLE as it is associated with significant morbidity and mortality. Advancing the treatment of lupus nephritis requires well-designed clinical trials and this can be challenging in SLE. The major obstacles involve identifying the correct population of patients to enroll and ensuring that a clinically appropriate and patient-centered endpoint is being measured. In this review, we will first discuss the clinical utility of endpoints chosen to represent lupus nephritis in global disease activity scales. Second, we will review completed and active trials focused on lupus nephritis and discuss the endpoints chosen. There are many important lessons to be learned from existing assessment tools and clinical trials. Reviewing these points will help ensure that future efforts will yield meaningful disease activity measures and well-designed clinical trials to advance our understanding of lupus management.  相似文献   

8.
BAFF (BLyS) and APRIL are TNF-like cytokines that support survival and differentiation of B cells. Recent studies have discovered a role for BAFF in augmenting both innate and adaptive immune responses as well as in collaborating with other inflammatory cytokines to promote the activation and differentiation of effector immune cells. BAFF is an important pathogenic factor in lupus mouse models and BAFF inhibition successfully delays disease onset in these mice, although the responsiveness to BAFF inhibition varies among different strains. These results have led to the development of inhibitors targeting BAFF and APRIL in humans. An anti-BAFF antibody has shown significant but modest efficacy in two Phase III clinical trials for moderately active SLE and other inhibitors are being developed or at early stages of clinical testing.  相似文献   

9.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease leading to inflammatory tissue damage in multiple organs (e.g., lupus nephritis). Current treatments including steroids, antimalarials, and immunosuppressive drugs have significant side effects. Activated protein C is a natural protein with anticoagulant and immunomodulatory effects, and its recombinant version has been approved by the U.S. Food and Drug Administration to treat severe sepsis. Given the similarities between overshooting immune activation in sepsis and autoimmunity, we hypothesized that recombinant activated protein C would also suppress SLE and lupus nephritis. To test this concept, autoimmune female MRL-Fas(lpr) mice were injected with either vehicle or recombinant human activated protein C from week 14-18 of age. Activated protein C treatment significantly suppressed lupus nephritis as evidenced by decrease in activity index, glomerular IgG and complement C3 deposits, macrophage counts, as well as intrarenal IL-12 expression. Further, activated protein C attenuated cutaneous lupus and lung disease as compared with vehicle-treated MRL-Fas(lpr) mice. In addition, parameters of systemic autoimmunity, such as plasma cytokine levels of IL-12p40, IL-6, and CCL2/MCP-1, and numbers of B cells and plasma cells in spleen were suppressed by activated protein C. The latter was associated with lower total plasma IgM and IgG levels as well as lower titers of anti-dsDNA IgG and rheumatoid factor. Together, recombinant activated protein C suppresses the abnormal systemic immune activation in SLE of MRL-Fas(lpr) mice, which prevents subsequent kidney, lung, and skin disease. These results implicate that recombinant activated protein C might be useful for the treatment of human SLE.  相似文献   

10.
Systemic autoimmunity such as systemic lupus erythematosus (SLE) is associated with the loss of B-cell tolerance, B-cell dysregulation and autoantibody production. While some autoantibodies may contribute to the pathology seen with SLE, numerous studies have shown that dysregulation of T-cell function is another critical aspect driving disease. The positive results obtained in clinical trials using T-cell- or B-cell-specific treatments have suggested that cooperation between T and B cells probably underlies disease progression in many patients. A similar cooperative mechanism seemed to explain SLE developing in mice overexpressing the B-cell-activating factor from the tumor necrosis factor family (BAFF). However, surprisingly, T-cell-deficient BAFF transgenic (Tg) mice develop SLE similar to T-cell-sufficient BAFF Tg mice, and the disease was linked to innate activation of B cells and production of proinflammatory autoantibody isotypes. In conclusion, dysregulated innate activation of B cells alone can drive disease independently of T cells, and as such this aspect represents a new pathogenic mechanism in autoimmunity.  相似文献   

11.
12.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by abnormal function of both the innate and the adaptive immune system, leading to a loss of tolerance to self-antigens. Monocytes are a key component of the innate immune system and are efficient producers of multiple cytokines. In SLE, inappropriate activation of monocytes is thought to contribute to the loss of self-tolerance. In this study, we demonstrate that type 1 interferon (IFN) production by CpG-challenged monocytes can be suppressed by C1q through activating leukocyte-associated Ig-like receptor-1 (LAIR-1), which contains immunoreceptor tyrosine-based inhibition motifs (ITIMs). The phosphorylation of LAIR-1 and the interaction of LAIR-1 with SH2 domain–containing protein tyrosine phosphatase-1 (SHP-1) were enhanced after LAIR-1 engagement by C1q. Moreover, engagement of LAIR-1 by C1q inhibited nuclear translocation of interferon regulatory factor (IRF)-3 and IRF5 in CpG-stimulated monocytes. These data suggest a model in which LAIR-1 engagement by C1q helps maintain monocyte tolerance, specifically with respect to Toll-like receptor-9–mediated monocyte activation.  相似文献   

13.
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease whose etiology remains largely unknown. The uncontrolled oxidative stress in SLE contributes to functional oxidative modifications of cellular protein, lipid and DNA and consequences of oxidative modification play a crucial role in immunomodulation and trigger autoimmunity. Measurements of oxidative modified protein, lipid and DNA in biological samples from SLE patients may assist in the elucidation of the pathophysiological mechanisms of the oxidative stress-related damage, the prediction of disease prognosis and the selection of adequate treatment in the early stage of disease. Application of these biomarkers in disease may indicate the early effectiveness of the therapy. This review is intended to provide an overview of various reactive oxygen species (ROS) formed during the state of disease and their biomarkers linking with disease. The first part of the review presents biochemistry and pathophysiology of ROS and antioxidant system in disease. The second part of the review discusses the recent development of oxidative stress biomarkers that relates pathogenesis in SLE patients and animal model. Finally, this review also describes the reported clinical trials of antioxidant in the disease that have evaluated the efficacy of antioxidant in the management of disease with ongoing conventional therapy.  相似文献   

14.
SLE pathogenesis is complex, but it is now widely accepted that autoantibodies play a key role in the process by forming excessive immune complexes; their deposits within tissues leading to inflammation and functional damages. A proliferation inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) superfamily mediating antibody-producing plasma cell (PC)-survival that may be involved in the duration of pathogenic autoantibodies in lupus. We found significant increases of APRIL at the mRNA and protein levels in bone marrow but not spleen cells from NZB/W lupus mice, as compared to control mice. Selective antibody-mediated APRIL blockade delays disease development in this model by preventing proteinuria, kidney lesions, and mortality. Notably, this was achieved by decreasing anti-DNA and anti-chromatin autoantibody levels, without any perturbation of B- and T-cell homeostasis. Thus, anti-APRIL treatment may constitute an alternative therapy in SLE highly specific to PCs compared to other B-cell targeting therapies tested in this disease, and likely to be associated with less adverse effects than any anti-inflammatory and immunosuppressant agents previously used.  相似文献   

15.
Role of apoptosis in autoimmunity   总被引:6,自引:0,他引:6  
Apoptosis is a physiological form of cell death required to ensure that the rate of cell division is balanced by the rate of cell death in multicellular organisms. Dysregulation of apoptosis is associated with the pathogenesis of a wide array of diseases: cancer, neurodegeneration, autoimmunity, heart disease and others. In this review we collect arguments supporting a hypothesis of a dysregulated apoptosis leading to development of autoimmunity like systemic lupus erythematosus (SLE). This notion is supported by occurence of known autoantigens in apoptotic blebs, in vitro findings of an increased rate of apoptotic lymphoblasts despite optimal cytokine stimulation combined with a defective in vitro clearance of apoptotic bodies by SLE phagocytes. Moreover, we and others could generate histone-specific lymphocytic cell lines from cells after activation with autologous apoptotic material. These lymphocytes could stimulate autologous B-lymphocytes to produce of anti-dsDNA antibodies, a diagnostic hallmark for SLE. Finally, antibodies against phospholipids like phosphatidylserine are often associated with systemic autoimmunopathies like SLE and others. Phosphatidylserine is exposed on apoptotic cells as early sign of programmed cell death and serves as phagocyte recognition molecule for apoptotic cells. Formation of immune complexes and deposition in tissues might lead to organ damage and disease. This scenario will be discussed in this review in detail.  相似文献   

16.
17.

Genetic variations of microRNA encoding genes influence various sorts of diseases by modifying the expression or activity of microRNAs. MicroRNA 146a is an epigenetic regulator of immune response through controlling the type I interferon (IFN) and nuclear factor kappa B (NF-κB) pathways. Genetic variations of microRNA 146a impact the susceptibility to systemic lupus erythematosus (SLE) and its clinical presentations. This study aimed to investigate the polymorphisms of microRNA-146a gene (rs2431697 and rs57095329) in patients with SLE and its association with disease activity. Sixty-five patients with SLE and 40 apparently healthy controls were enrolled in this study. Patients were subjected to history taking, clinical examination, and disease activity evaluation by SLEDAI score. The microRNA-146a variants were determined by allele discrimination real-time PCR method in all participants. We found a statistically significant association between rs2431697 T allele and SLE (P-value?<?0.05), but there was no significant association between rs57095329 and SLE. The T/T genotype of microRNA-146a rs2431697 was associated with lupus nephritis, higher disease activity, and autoantibodies production. The microRNA-146a rs2431697 T allele could be a potential risk factor that contributes to SLE susceptibility, development of lupus nephritis, and disease activity.

  相似文献   

18.
19.
Systemic lupus erythematosus (SLE) is a human chronic inflammatory disease caused by the action of autoreactive T and B cells. Class I phosphoinositide-3-kinases (PI3K) are enzymes that trigger formation of 3-poly-phosphoinositides that induce cell survival. Enhanced PI3K activation is a frequent event in human cancer. Nonetheless, in a genetic model with enhanced activation of class I(A) PI3K in T cells, mice show a greater tumor index but die of a lupus-like disease. In this study, we studied the potential PI3K involvement in human SLE. The PI3K pathway was frequently activated in SLE patient PBMC and T cells (~70% of cases), more markedly in active disease phases. We examined the mechanism for PI3K pathway activation and found enhanced activation of PI3Kδ in SLE peripheral blood T cells. The magnitude of PI3K pathway activation in patients paralleled activated/memory T cell accumulation. We examined potential tolerance mechanisms affected by increased PI3K activity; SLE patients showed reduced activation-induced cell death of activated/memory T cells. Moreover, the defective activation-induced cell death in SLE T cells was corrected after reduction of PI3Kδ activity, suggesting that PI3Kδ contributes to induction of enhanced SLE memory T cell survival. These observations point to PI3Kδ as a target of clinical interest for SLE.  相似文献   

20.
The contribution of individual molecular aberrations to the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease that affects multiple organs, is often difficult to evaluate because of the presence of abundant confounding factors. To assess the effect of increased expression of the phosphatase protein phosphatase 2A (PP2A) in T cells, as recorded in SLE patients, we generated a transgenic mouse that overexpresses the PP2Ac subunit in T cells. The transgenic mouse displays a heightened susceptibility to immune-mediated glomerulonephritis in the absence of other immune defects. CD4(+) T cells produce increased amounts of IL-17 while the number of neutrophils in the peripheral blood is increased. IL-17 neutralization abrogated the development of glomerulonephritis. We conclude that increased PP2Ac expression participates in SLE pathogenesis by promoting inflammation through unchecked IL-17 production and facilitating the development of end-organ damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号