共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Evolutionarily conserved function of a viral microRNA 总被引:1,自引:0,他引:1
MicroRNAs (miRNAs) are potent RNA regulators of gene expression. Some viruses encode miRNAs, most of unknown function. The majority of viral miRNAs are not conserved, and whether any have conserved functions remains unclear. Here, we report that two human polyomaviruses associated with serious disease in immunocompromised individuals, JC virus and BK virus, encode miRNAs with the same function as that of the monkey polyomavirus simian virus 40 miRNAs. These miRNAs are expressed late during infection to autoregulate early gene expression. We show that the miRNAs generated from both arms of the pre-miRNA hairpin are active at directing the cleavage of the early mRNAs. This finding suggests that despite multiple differences in the miRNA seed regions, the primary target (the early mRNAs) and function (the downregulation of early gene expression) are evolutionarily conserved among the primate polyomavirus-encoded miRNAs. Furthermore, we show that these miRNAs are expressed in individuals diagnosed with polyomavirus-associated disease, suggesting their potential as targets for therapeutic intervention. 相似文献
3.
Gibberellins (GAs) play important roles in many essential plant growth and development processes. A family of nuclear growth-repressing DELLA proteins is the key component in GA signaling. GA perception is mediated by GID1, and the key event of GA signaling is the degradation of DELLA proteins via the 26S proteasome pathway. DELLA proteins integrating other plant hormones signaling and environmental cue modulating plant growth and development have been revealed. GA turning on the de-DELLA-repressing system is conserved, and independently establishes step-by-step recruitment of GA-stimulated GID1-DELLA interaction and DELLA growth-repression functions during land plant evolution. These discoveries open new prospects for the understanding of GA action and DELLA-mediated signaling in plants. 相似文献
4.
The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized and uncharacterized enzyme superfamilies. 相似文献
5.
《Neuron》2023,111(6):824-838.e7
6.
The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come. 相似文献
7.
8.
9.
Evolutionarily conserved mammalian adenine nucleotide translocase 4 is essential for spermatogenesis 总被引:4,自引:0,他引:4
Brower JV Rodic N Seki T Jorgensen M Fliess N Yachnis AT McCarrey JR Oh SP Terada N 《The Journal of biological chemistry》2007,282(40):29658-29666
The adenine nucleotide translocases (Ant) facilitate the transport of ADP and ATP by an antiport mechanism across the inner mitochondrial membrane, thus playing an essential role in cellular energy metabolism. We recently identified a novel member of the Ant family in mouse, Ant4, of which gene configuration as well as amino acid homology is well conserved among mammals. The conservation of Ant4 in mammals, along with the absence of Ant4 in nonmammalian species, suggests a unique and indispensable role for this ADP/ATP carrier in mammalian development. Of interest, in contrast to its paralog Ant2, which is encoded by the X chromosome and ubiquitously expressed in somatic cells, Ant4 is encoded by an autosome and selectively expressed in testicular germ cells. Immunohistochemical examination as well as RNA expression analysis using separated spermatogenic cell types revealed that Ant4 expression was particularly high in spermatocytes. When we generated Ant4-deficient mice by targeted disruption, a significant reduction in testicular size was observed without any other distinguishable abnormalities in the mice. Histological examination as well as stage-specific gene expression analysis in adult and neonatal testes revealed a severe reduction of spermatocytes accompanied by increased apoptosis. Subsequently, the Ant4-deficient male mice were infertile. Taken together, these data elucidated the indispensable role of Ant4 in murine spermatogenesis. Considering the unique conservation and chromosomal location of the Ant family genes in mammals, the Ant4 gene may have arisen in mammalian ancestors and been conserved in mammals to serve as the sole and essential mitochondrial ADP/ATP carrier during spermatogenesis where the sex chromosome-linked Ant2 gene is inactivated. 相似文献
10.
Many Leishmania antigens have been identified as members of conserved protein families, such as the acidic ribosomal proteins, the histones and the heat-shock proteins; despite this, they elicit specific immune responses. Furthermore, homologues of many of these antigens are immune targets in other infectious diseases and systemic autoimmune diseases. Here, Jose Mar a Requena, Carlos Alonso and Manuel Soto review this class of widely distributed antigens, which they call 'panantigens'. They also propose a model to explain the prominent immunogenicity of these antigens during Leishmania infection, on the basis of the fact that many panantigens are constituents of multicomponent complexes in the cell. The elucidation of the pathways by which Leishmania antigens are processed and presented to effector cells from the host immune system will shed light on the immunopathology of leishmaniasis and help in the development of protective immunotherapies. 相似文献
11.
12.
13.
Wegner N Wait R Venables PJ 《The international journal of biochemistry & cell biology》2009,41(2):390-397
The immune system has evolved to eliminate or inactivate infectious organisms. An inappropriate response against self-components (autoantigens) can result in autoimmune disease. Here we examine the hypothesis that some evolutionarily conserved proteins, present in pathogenic and commensal organisms and their hosts, provide the stimulus that initiates autoimmune disease in susceptible individuals. We focus on seven autoantigens, of which at least four, glutamate decarboxylase, pyruvate dehydrogenase, histidyl-tRNA synthetase and alpha enolase, have orthologs in bacteria. Citrullinated alpha-enolase, a target for autoantibodies in 40% of patients with rheumatoid arthritis, is our main example. The major epitope is highly conserved, with over 90% identity to human in some bacteria. We propose that this reactivity of autoantibodies to shared sequences provides a model of autoimmunity in rheumatoid arthritis, which may well extend to other autoimmune disease in humans. 相似文献
14.
Neuhofer D Wohlgemuth S Stumpner A Ronacher B 《Proceedings. Biological sciences / The Royal Society》2008,275(1646):1965-1974
We investigated encoding properties of identified auditory interneurons in two not closely related grasshopper species (Acrididae). The neurons can be homologized on the basis of their similar morphologies and physiologies. As test stimuli, we used the species-specific stridulation signals of Chorthippus biguttulus, which evidently are not relevant for the other species, Locusta migratoria. We recorded spike trains produced in response to these signals from several neuron types at the first levels of the auditory pathway in both species. Using a spike train metric to quantify differences between neuronal responses, we found a high similarity in the responses of homologous neurons: interspecific differences between the responses of homologous neurons in the two species were not significantly larger than intraspecific differences (between several specimens of a neuron in one species). These results suggest that the elements of the thoracic auditory pathway have been strongly conserved during the evolutionary divergence of these species. According to the 'efficient coding' hypothesis, an adaptation of the thoracic auditory pathway to the specific needs of acoustic communication could be expected. We conclude that there must have been stabilizing selective forces at work that conserved coding characteristics and prevented such an adaptation. 相似文献
15.
The FYVE domain is an approx. 80 amino acid motif that binds to the phosphoinositide PtdIns3P with high specificity and affinity. It is present in 38 predicted gene products within the human genome, but only in 12-13 in Caenorhabditis elegans and Drosophila melanogaster. Eight of these are highly conserved in all three organisms, and they include proteins that have not been characterized in any species. One of these, WDFY2, appears to play an important role in early endocytosis and was revealed in a RNAi (RNA interference) screen in C. elegans. Interestingly, some proteins contain FYVE-like domains in C. elegans and D. melanogaster, but have lost this domain during evolution. One of these is the homologue of Rabatin-5, a protein that, in mammalian cells, binds both Rab5 and Rabex-5, a guanine-nucleotide exchange factor for Rab5. Thus the Rabatin-5 homologue suggests that mechanisms to link PtdIns3P and Rab5 activation developed in evolution. In mammalian cells, these mechanisms are apparent in the existence of proteins that bind PtdIns3P and Rab GTPases, such as EEA1, Rabenosyn-5 and Rabip4'. Despite the comparable ability to bind to PtdIns3P in vitro, FYVE domains display widely variable abilities to interact with endosomes in intact cells. This variation is due to three distinct properties of FYVE domains conferred by residues that are not involved in PtdIns3P head group recognition: These properties are: (i) the propensity to oligomerize, (ii) the ability to insert into the membrane bilayer, and (iii) differing electrostatic interactions with the bilayer surface. The different binding properties are likely to regulate the extent and duration of the interaction of specific FYVE domain-containing proteins with early endosomes, and thereby their biological function. 相似文献
16.
Evolutionarily conserved networks of residues mediate allosteric communication in proteins 总被引:20,自引:0,他引:20
A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originating at one site in a protein propagate reliably to affect distant functional sites. The general principles of protein structure that underlie this process remain unknown. Here, we describe a sequence-based statistical method for quantitatively mapping the global network of amino acid interactions in a protein. Application of this method for three structurally and functionally distinct protein families (G protein-coupled receptors, the chymotrypsin class of serine proteases and hemoglobins) reveals a surprisingly simple architecture for amino acid interactions in each protein family: a small subset of residues forms physically connected networks that link distant functional sites in the tertiary structure. Although small in number, residues comprising the network show excellent correlation with the large body of mechanistic data available for each family. The data suggest that evolutionarily conserved sparse networks of amino acid interactions represent structural motifs for allosteric communication in proteins. 相似文献
17.
18.
19.
Angus L. Dawe Kim A. Caldwell Phillip M. Harris Ronald N. Morris Guy A. Caldwell 《Development genes and evolution》2001,211(8-9):434-441
The nudF and nudC genes of the fungus Aspergillus nidulans encode proteins that are members of two evolutionarily conserved families. In A. nidulans these proteins mediate nuclear migration along the hyphae. The human ortholog of nudF is Lis1, a gene essential for neuronal migration in the developing cerebral cortex. The mammalian ortholog of nudC encodes a protein that interacts with Lis1. We have identified orthologs of nudC and Lis1 from the nematode Caenorhabditis elegans. Heterologous expression of the C. elegans nudC ortholog, nud-1, complements the A. nidulans nudC3 mutant, demonstrating evolutionary conservation of function. A C. elegans nud-1::GFP fusion produces sustained fluorescence in sensory neurons and embryos, and transient fluorescence in the gonad, gut, vulva, ventral cord, and hypodermal seam cells. Fusion of GFP to C. elegans lis-1 revealed expression in all major neuronal processes of the animal as well as the multinucleate spermathecal valves and adult seam cells. Phenotypic analysis of either nud-1 and lis-1 by RNA interference yielded similar phenotypes, including embryonic lethality, sterility, altered vulval morphology, and uncoordinated movement. Digital time-lapse video microscopy was used to determine that RNAi-treated embryos exhibited nuclear positioning defects in early embryonic cell division similar to those reported for dynein/dynactin depletion. These results demonstrate that the LIS-1/NUDC-like proteins of C. elegans represent a link between nuclear positioning, cell division, and neuronal function. 相似文献