首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
More and more agricultural land in the Netherlands is becoming available for ecological restoration projects. However, nutrient levels in the top layer of the soils are high because the agricultural lands have been heavily fertilized for decades. As drainage ditches are no longer maintained when agricultural use ends, the agricultural lands usually become much wetter. As a result, former agricultural soils tend to develop extensive monotonous stands of Juncus effusus , which have little value from an ecological point of view. In this article, we present the results of field measurements/observations and experiments to examine the relationship between nutrient availability and J. effusus growth. In addition, we present and discuss results of experiments to study the potential beneficial effects of liming. Our findings show that the growth of J. effusus on moist or wet soils seems to be strongly determined by the Olsen-P concentration in the soil. The restoration of diverse, species-rich vegetation types on former agricultural lands with a noncalcareous sandy soil will in most cases not be possible within a reasonable time span without topsoil removal. Liming might be a valuable additional measure to enhance the quality of the soil after topsoil removal, and to prevent mobilization of P to groundwater or surface water. If removal of the topsoil is considered to create P limitation, it is important to study P concentrations at various depths to establish the amount of soil that has to be removed.  相似文献   

2.
Arctic and Subarctic ecosystems will in the near future be exposed to severe environmental stresses due to global warming. For example, the microbial community structure and function may change as a result of increased temperatures. In Greenland, agriculture is carried out in the Subarctic regions with only limited pest management, despite the presence of plant pathogenic fungi. The microbial community composition in agricultural soils, which plays an important role for soil and plant health and for crop yield, may be affected by the use of different fertilizer treatments. Currently, only limited research has been performed on the effects of these treatments on bacterial communities in Arctic and Subarctic agricultural soils. The major objective of this study was to investigate the short-term impact of conventional (NPK) and organic (sheep manure supplemented with nitrogen) fertilizer treatments on bacterial diversity, nutrient composition and crop yield in two Greenlandic agricultural soils. An effect of fertilizer was found on soil and plant nutrient levels and on crop yields. Pyrosequencing of 16S rRNA gene sequences did not reveal any major changes in the overall bacterial community composition as a result of different fertilizer treatments, indicating a robust microbial community in these soils. In addition, differences in nutrient levels, crop yields and bacterial abundances were found between the two field sites and the two experimental growth seasons, which likely reflect differences in physical–chemical soil parameters.  相似文献   

3.
《Biological Wastes》1987,19(3):165-178
Water samples for nitrate testing were collected from over 200 wells in Kent and Sussex counties in Delaware over an 18-month period in areas with different agricultural land use. Nearly 70% of the wells were individual home water supplies. The rest of the wells, constructed from 3·2-cm diameter PVC pipe, were installed at selected locations. Water samples were also collected from monitoring wells around two potato-growing sites, on irrigated corn and soybean areas, a field spread with poultry manure, two animal-waste lagoon sites, and near stockpiled poultry manure.Certain agricultural activities cause higher nitrate concentrations in the ground water. Poultry manure has increased nitrate concentrations in the ground water in southern Delaware more than commercial fertilizer. Highest nitrate concentrations are found in areas with excessively well-drained soils. Some clay-lined, animal-waste lagoons may cause ground-water contamination. Potato growing in Delaware is not causing high nitrate concentrations in the water table aquifer because of the heavier soils that are not as susceptible to nitrite leaching.  相似文献   

4.
Hydrogen-oxidising bacteria play a key role in maintaining the composition of gases within the atmosphere and are ubiquitous in agricultural soils. While studies have shown that hydrogen accumulates in soil surrounding legume nodules and the soil surface, soils as a whole act as a net sink for hydrogen, raising questions about how hydrogen is internally recycled by soils. Can the energy derived from hydrogen oxidation be directly funnelled into plants to promote their growth or does it only act as a booster for other plant-growth promoting bacteria? Moreover, while the fertilisation effect of hydrogen on plants has previously been shown to be beneficial, questions remain about the upper limit of hydrogen uptake by plants before it becomes detrimental. Agricultural practices such as fertilisation may impact the balance of hydrogen-oxidisers and hydrogen-producers in these ecosystems, potentially having detrimental effects on not only agricultural land but also global biogeochemical cycles. In this perspectives piece, we highlight the importance of understanding the contribution of hydrogen to agricultural soils and the effects of agricultural practices on the ability for bacteria to cycle hydrogen in agricultural soils. We propose a framework to gain better insights into microbial hydrogen cycling within agroecosystems, which could contribute to the development of new agricultural biotechnologies.  相似文献   

5.
Glyphosate [N-(phosphonomethyl)-glycine] is a herbicide widely used in large quantities in agricultural applications. It is also known to form complexes with metal ions, although its influence on metal behavior, such as lead (Pb) in soil, is not well understood. In this study, the adsorption and co-adsorption of Pb and glyphosate were determined on two soils [a red (RS) soil, Udic Ferrisol, and a yellow-brown (YB) soil, Udic Luvisol] of distinctly different chemical characteristics at varying pH conditions. Results indicate that the adsorption of lead and glyphosate strongly depends on soil types: the RS soil, characterized by a relatively high iron/aluminum content but a low pH and organic matter content, shows a much lower adsorption capacity for Pb but a higher sorption for glyphosate than the YB soil. The co-existence of Pb and glyphosate in soils resulted in complex interactions among Pb, glyphosate, Pb-glyphosate complexes, and soil minerals. The presence of glyphosate decreased Pb adsorption on the two soils, which was attributed primarily to the formation of soluble Pb-glyphosate complexes having relatively low affinities to soil surfaces. On the other hand, addition of Pb increased the adsorption of glyphosate on both soils, which was attributed to: (1) a decreased solution pH due to the ion exchange between Pb2+ and H+ on soil surfaces; and (2) increased sorption sites where Pb was adsorbed and acted as a bridge between glyphosate and the soil. The present study illustrates that the complex interactions among glyphosate, Pb, and soil may have important implications for the mobility and bioavailability of Pb in soil and should thus be considered in future environmental risk assessments.  相似文献   

6.
Land use and organic carbon content of some subtropical soils   总被引:29,自引:0,他引:29  
Summary The assumption that the organic matter content of tropical forest soils is oxidized to atmospheric carbon dioxide when these soils are converted to agricultural use was tested using results of soil surveys in Puerto Rico (1940's, 1960's, and 1980's). Results showed that under intensive agricultural use, soil carbon in the top 18 cm of soil was about 30–37 Mg/ha, regardless of climatic conditions. Reduced intensity of agricultural use resulted in an increase of soil carbon in the order of 0.3–0.5 Mg.ha−1. yr−1 over a 40-yr period. Rates of soil carbon accumulation were inversely related to the sand content of soils. The relation between rates of soil carbon accumulation and climate or soil texture were better defined at higher soil carbon content. Soils under pasture accumulated soil carbon and often contained similar or greater amounts than adjacent mature forest soils (60–150 Mg/ha in the top 25 or 50 cm). Soils in moist climates exhibited greater variations in soil carbon content with changes in land use (both in terms of loss and recovery) than did soils in dry climates. However, in all life zones studied, the recovery of soil carbon after abandonment of agriculture was faster than generally assumed. Low carbon-to-nitrogen ratios suggested that intensively used soils may be stable in their nutrient retention capacity. The observed resiliency of these soils suggested that their role as atmospheric carbon sources has been overestimated, while their potential role as atmospheric carbon sinks has been underestimated.  相似文献   

7.
Intensive agriculture has the potential to reduce soil carbon stocks in the years following initial cultivation, although the magnitude and direction of the effect can vary with ecosystem and management factors. Agriculture can also shift the carbon chemistry of soils via changes in crop plant chemistry, decomposition, and/or soil amendments [e.g. black carbon (i.e. charcoal)]. It is possible that soil carbon levels can recover if intensive cultivation ends, but the factors driving the extent and quality of this recovery are not well understood. Here, we examined soil carbon pool sizes and carbon chemistry >200 years after intensive cultivation by early Hawaiians. We compared soils from an extensive pre-European-contact agricultural field system with reference sites under similar modern management. Sites were selected along a climate and soil weathering gradient to investigate interactions between historic land use and ecosystem properties, such as soil mineralogy, in driving soil carbon recovery. Soil carbon content was measured from 0 to 30 cm depth, and carbon chemistry was assessed using 13C nuclear magnetic resonance spectroscopy. Overall, we found significantly lower soil carbon stocks in pre-contact agricultural sites compared to reference sites. Radiocarbon dating of bulk soil carbon showed a trend toward older carbon in agricultural versus reference soils, suggesting decreased retention of newer C in agricultural sites. Radiocarbon dating of macroscopic charcoal particles from under agricultural field walls indicated that there were black carbon inputs concurrent with pre-contact agricultural activity. Nonetheless, black carbon and carbonyl carbon levels were lower in agricultural versus reference soils, suggesting decreased retention of specific carbon groups in cultivated sites. Proteins were the only biomolecule higher in abundance in agricultural versus reference sites. Finally, there was an interacting effect of soil mineralogy and historic land use on soil carbon stocks. Whereas short range order (SRO) minerals were positively associated with total soil carbon overall, differences in soil carbon between agricultural and reference soils were largest in soils with high concentrations of SRO minerals. Our results indicate that the negative effect of agriculture on soil carbon stocks can be long-lived, may be associated with persistent changes in soil carbon chemistry, and can vary with soil mineralogical properties.  相似文献   

8.
生态系统转换对土壤中碳水化合物的影响   总被引:10,自引:1,他引:9  
采集贵州省茂兰喀斯特原始红楼梦 林中森林土壤和相邻农田土壤,系统分析其中碳水化合物总量和各单糖的含量。并以此来查明由森林生态系统向农业生态系统转换的过程对土壤碳水化合物的影响,结果表明:相对于森林土壤,农业土壤中碳水化合物总量明显降低。在农田土壤中六糖/五糖比值有升高的趋势,其中以M/X比值最为明显,这说明,在该转换过程中植物来源的单糖组分有所降低,微生物来源的则相对增加。  相似文献   

9.
Hungary is facing to perform intensive afforestation. New forests will be planted on dry, poorly fertile soils nonprofitable for agricultural use. Applying artificially mycorrhized seedlings may considerably increase the effectivity of afforestation and decrease costs.  相似文献   

10.
Nitrogen (N) loss from agricultural systems raises concerns about the potential impact of farming practices on environmental quality. N is a critical input to agricultural production. However, there is little understanding of the interactions among crop water use, N application rates, and soil types. This study was designed to quantify these interactions in corn ( Zea mays L.) grown in production-size fields in central Iowa on the Clarion-Nicollet-Webster soil association. Seasonal water use varied by soil type and N application rate. Yield varied with N application rate, with the highest average yield obtained at 100 kg ha(-1). N use efficiency (NUE) decreased with increasing N application rates, having values around 50%. Water use efficiency (WUE) decreased as N fertilizer rates increased. Analysis of plant growth patterns showed that in the low organic matter soils (lower water-holding capacities), potential yield was not achieved because of water deficits during the grain-filling period. Using precipitation data coupled with daily water use throughout the season, lower organic matter soils showed these soils began to drain earlier in the spring and continued to drain more water throughout the season. The low NUE in these soils together with increased drainage lead to greater N loss from these soils. Improved management decisions have shown that it is possible to couple water use patterns with N application to increase both WUE and NUE.  相似文献   

11.
Changes in soil organic carbon (SOC) in agricultural soils influence soil quality and greenhouse gas concentrations in the atmosphere. Land use, management practices, soil characteristics, and climate influence such changes. Using the Century model we estimated the rate of SOC change in agricultural soils of Canada for the period 1970 to 2010. This estimation was based on the estimated SOC change for 15% of the 1250 agriculturally designated soil landscape of Canada (SLC) polygons. Simulations were carried out for two to five crop rotations and for conventional and no‐tillage. The results indicate that the agricultural soils in Canada, whose SOC are currently very close to equilibrium, will stop being a net source of CO2 and will become a sink by the year 2000. Rates of carbon change for the years 1970, 1990, and 2010 were estimated to be ?67, ? 39, and 11 kgC ha?1. The rate of decline in the carbon content of agricultural soils in Canada has slowed considerably in the 1990s as a result of an increase in the adoption of no‐tillage management, a reduction in the use of summer fallowing, and an increase in fertilizer application. We estimate that the proportion of agricultural land storing SOC will have increased from 17% in 1990 to 53% by the year 2000.  相似文献   

12.
Agricultural soils have tremendous potential to sequester soil organic carbon (SOC) and mitigate global climate change. However, agricultural land use has a profound impact on SOC dynamics, and few studies have explored how agricultural land use combined with soil conditions affect SOC changes throughout the soil profile. Based on a paired soil resampling campaign in the 1980s and 2010s, this study investigated the SOC changes of the soil profile caused by agricultural land use and the correlations with parent material and topography across the Chengdu Plain of China. The results showed that the SOC content increased by 3.78 g C/kg in the topsoil (0–20 cm), but decreased in the 20–40 cm and 40–60 cm soil layers by 0.90 and 1.26 g C/kg respectively. SOC increases in topsoil were observed for all types of agricultural land. Afforestation on former agricultural land also caused SOC decreases in the 20–60 cm soil layers, while SOC decreases only occurred in the 40–60 cm soil layer for agricultural land using a traditional crop rotation (i.e. traditional rice–wheat/rapeseed rotation) and with rice–vegetable rotations converted from the traditional rotations. For each agricultural land use, SOC decreases in deep soils only occurred in high relief areas and in soils formed from Q4 (Quaternary Holocene) grey‐brown alluvium and Q4 grey alluvium that had a relatively low soil bulk density and clay content. The results indicated that SOC change caused by agricultural land use was depth dependent and that the effects of agricultural land use on soil profile SOC dynamics varied with soil characteristics and topography. Subsoil SOC decreases were more likely to occur in high relief areas and in soils with low soil bulk density and low clay content.  相似文献   

13.
Application of organic manure (OM) and crop residues in agricultural soils can potentially influence positively or negatively the availability of soil phosphorus (P) through soil mineralization, sorption, or desorption of soil-bound P. Traditionally, the addition of OM can reduce the capacity of the soil colloids to adsorb P, thus increasing the release of P in soil solution, but also added OM can increase the adsorption site and increase the fixation or sorption of P to soil colloids, thus reducing the availability of P in soil solution and loss to the environment. The highly weathered tropical soils (HWTS) are susceptible to P insufficiency because HWTS have high P adsorption and fixation; this is mainly due to high concentration of P adsorbent. The main P adsorbents in HWTS include Al, Fe, Ca, and clay minerals, which are principally the same binding or adsorbent for OM compounds, but in excess, are toxic (Al and Fe) to crops. Thus, the presence of OM in HWTS can compromise the adsorption and availability of P in agricultural soils following phosphatic fertilizer applications. In this study, the influence of OM on P adsorption and availability was characterized to have a clear understanding of how OM influences P availability in agricultural soils, especially in highly weathered tropical soil. It is clearly outlined that the application of OM and crop residues can positively or negatively influence the availability of P in agricultural soils for plant uptake and dictate the P that is available for loss to the environment. Thus, the addition of organic matter as a strategy to increase P bioavailability for plant uptake must be treated with care because their contribution is not strait forward to be positive in many agricultural soils.  相似文献   

14.
Aim Climate, topography and soils drive many patterns of plant distribution and abundance across landscapes, but current plant communities may also reflect a legacy of past disturbance such as agricultural land use. To assess the relative influences of environmental conditions and disturbance history on vegetation, it is important to understand how these forces interact. This study relates the geographical distribution of land uses to variation in topography and soils; evaluates the consequences of land‐use decisions for current forests; and examines the effects of agricultural land use on the chemical properties of forest soils. Location Tompkins County occupies 1250 km2 in central New York's Finger Lakes region. Like much of eastern North America, this area underwent forest clearance for agriculture during the 1800s and widespread field abandonment and forest recovery during the 1900s. The current landscape consists of a patchwork of forests that were never cleared, forests that developed on old fields and active agricultural lands. Methods We investigated relationships among topography, soils and land‐use decisions by gathering information about land‐use history, slope, aspect, elevation, soil lime content, soil drainage and accessibility in a geographic information system (GIS). To assess the effects of agriculture on forest soil chemistry, we measured pH, organic matter content and extractable nutrient concentrations in field‐collected soil samples from 47 post‐agricultural and uncleared forests. Results Steeper slopes, less accessible lands and lower‐lime soils tended to remain forested, and farmers were more likely to abandon fields that were steeper, farther from roads, lower in lime and more poorly drained. Slope had by far the greatest impact on patterns of clearance and abandonment, and accessibility had a surprisingly strong influence on the distribution of land uses. The effects of other factors varied more, depending for example on location within the county. Current forest types differed accordingly in topography and soil attributes, particularly slope, but they also showed much overlap. Post‐agricultural and uncleared forest soils had similar chemical properties. Forests on lands abandoned from agriculture 80–100 years before had slightly higher pH and nutrient concentrations than adjacent, uncleared forests, but these changes were small compared to environmental variation across the county. Main conclusions Despite differential use of lands according to their topography and soils, the substantial influence of accessibility and the relatively small scale of land‐use decisions allowed for broad similarity among forest types. Thus, the topography and soil differences created by land‐use decisions probably contribute little to landscape‐level patterns of diversity. Subtle changes in forest soil chemistry left from past agriculture may nevertheless affect plant distribution and abundance at finer scales.  相似文献   

15.
Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re‐investment of carbon compounds (residues) into agro‐systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well‐aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio‐based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group‐specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell‐specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land‐use change.  相似文献   

16.
Root based approaches to improving nitrogen use efficiency in plants   总被引:6,自引:0,他引:6  
In the majority of agricultural growing regions, crop production is highly dependent on the supply of exogenous nitrogen (N) fertilizers. Traditionally, this dependency and the use of N-fertilizers to restore N depleted soils has been rewarded with increased plant health and yields. In recent years, increased competition for non-renewable fossil fuel reserves has directly elevated prices of N-fertilizers and the cost of agricultural production worldwide. Furthermore, N-fertilizer based pollution is becoming a serious issue for many regions where agriculture is highly concentrated. To help minimize the N footprint associated with agricultural production there is significant interest at the plant level to develop technologies which can allow economically viable production while using less applied N. To complement recent reviews examining N utilization efficiency in agricultural plants, this review will explore those strategies operating specifically at the root level, which may directly contribute to improved N use efficiencies in agricultural crops such as cereals, where the majority of N-fertilizers are used and lost to the environment. Root specific phenotypes that will be addressed in the context of improvements to N acquisition and assimilation efficiencies include: root morphology; root to shoot ratios; root vigour, root length density; and root N transport and metabolism.  相似文献   

17.
Are soils in urban ecosystems compacted? A citywide analysis   总被引:1,自引:0,他引:1  
Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.  相似文献   

18.
Barriuso J  Marín S  Mellado RP 《PloS one》2011,6(11):e27558

Background

Glyphosate is a herbicide that is liable to be used in the extensive cultivation of glyphosate-tolerant cultivars. The potential accumulation of the relative effect of glyphosate on the rhizobacterial communities of glyphosate-tolerant maize has been monitored over a period of three years.

Methodology/Principal Findings

The composition of rhizobacterial communities is known to vary with soil texture, hence, the analyses have been performed in two agricultural fields with a different soil texture. The accumulative effects of glyphosate have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The relative composition of the rhizobacterial communities does vary in each field over the three-year period. The overall distribution of the bacterial phyla seems to change from one year to the next similarly in the untreated and glyphosate-treated soils in both fields. The two methods used to estimate bacterial diversity offered consistent results and are equally suitable for diversity assessment.

Conclusions/Significance

The glyphosate treatment during the three-year period of seasonal cultivation in two different fields did not seem to significantly change the maize rhizobacterial communities when compared to those of the untreated soil. This may be particularly relevant with respect to a potential authorisation to cultivate glyphosate-tolerant maize in the European Union.  相似文献   

19.
20.
Glomalin is a soil proteinaceous substance produced by arbuscular mycorrhizal fungi. Most of the information available concerning this protein has been collected in relation to its role in soil aggregation. In this study, we explored the distribution of glomalin across soil horizons, decomposition of glomalin, and relationship with soil C and N in an agricultural field, a native forest, and an afforested system. Glomalin was present in A, B, and C horizons in decreasing concentrations. Land-use type significantly affected glomalin concentrations (mg cm–3), with native forest soils having the highest concentrations of the three land-use types in both A and B horizons. In terms of glomalin stocks (Mg ha–1), calculated based on corrected horizon weights, the agricultural area was significantly lower than both afforested and native forest areas. As measured after a 413 day laboratory soil incubation, glomalin was least persistent in the A horizon of the afforested area.. In agricultural soils and native soils, ca. 50% of glomalin was still remaining after this incubation, indicating that some glomalin may be in the slow or recalcitrant soil C fraction. Comparison of glomalin decomposition with CO2-C respired during incubation indicates that glomalin makes a large contribution to active soil organic C pools. Soil C and N were highly correlated with glomalin across all soils and within each land-use type, indicating that glomalin may be under similar controls as soil C. Our results show that glomalin may be useful as an indicator of land-use change effects on deciduous forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号