首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The antennal lobe (AL) is the primary structure in the Drosophila brain that relays odor information from the antennae to higher brain centers. The characterization of uniglomerular projection neurons (PNs) and some local interneurons has facilitated our understanding of olfaction; however, many other AL neurons remain unidentified. Because neuron types are mostly specified by lineage and temporal origins, we use the MARCM techniques with a set of enhancer-trap GAL4 lines to perform systematical lineage analysis to characterize neuron morphologies, lineage origin and birth timing in the three AL neuron lineages that contain GAL4-GH146-positive PNs: anterodorsal, lateral and ventral lineages. The results show that the anterodorsal lineage is composed of pure uniglomerular PNs that project through the inner antennocerebral tract. The ventral lineage produces uniglomerular and multiglomerular PNs that project through the middle antennocerebral tract. The lateral lineage generates multiple types of neurons, including uniglomeurlar PNs, diverse atypical PNs, various types of AL local interneurons and the neurons that make no connection within the ALs. Specific neuron types in all three lineages are produced in specific time windows, although multiple neuron types in the lateral lineage are made simultaneously. These systematic cell lineage analyses have not only filled gaps in the olfactory map, but have also exemplified additional strategies used in the brain to increase neuronal diversity.  相似文献   

4.
One Drosophila mushroom body (MB) is derived from four indistinguishable cell lineages, development of which involves sequential generation of multiple distinct types of neurons. Differential labeling of distinct MB clones reveals that MB dendrites of different clonal origins are well mixed at the larval stage but become restricted to distinct spaces in adults. Interestingly, a small dendritic domain in the adult MB calyx remains as a fourfold structure that, similar to the entire larval calyx, receives dendritic inputs from all four MB clones. Mosaic analysis of single neurons demonstrates that MB neurons, which are born around pupal formation, acquire unique dendritic branching patterns and consistently project their primary dendrites into the fourfold dendritic domain. Distinct dendrite distribution patterns are also observed for other subtypes of MB neurons. In addition, pruning of larval dendrites during metamorphosis allows for establishment of adult-specific dendrite elaboration/distribution patterns. Taken together, subregional differences exist in the adult Drosophila MB calyx, where processing and integration of distinct types of sensory information begin.  相似文献   

5.
6.
Balancing self-renewal and differentiation of stem cells is an important issue in stem cell and cancer biology. Recently, the Drosophila neuroblast (NB), neural stem cell has emerged as an excellent model for stem cell self-renewal and tumorigenesis. It is of great interest to understand how defects in the asymmetric division of neural stem cells lead to tumor formation. Here, we review recent advances in asymmetric division and the self-renewal control of Drosophila NBs. We summarize molecular mechanisms of asymmetric cell division and discuss how the defects in asymmetric division lead to tumor formation. Gain-of-function or loss-of-function of various proteins in the asymmetric machinery can drive NB overgrowth and tumor formation. These proteins control either the asymmetric protein localization or mitotic spindle orientation of NBs. We also discuss other mechanisms of brain tumor suppression that are beyond the control of asymmetric division.  相似文献   

7.
The grasshopper central nervous system is composed of a brain and a chain of segmental ganglia. Each hemiganglion contains about 1000 neurons, most of which can be individually identified by their unique morphology and synaptic connectivity. Shortly after gastrulation the ventral ectoderm becomes a neurogenic region. In each hemisegment, ca. 150 neurogenic ectodermal cells (nECs) give rise to a stereotyped pattern of 30 identified neuroblasts (NBs, neuronal stem cells); the remaining nECs become various non-neuronal cells or die. The 30 NBs then give rise to about 1000 neurons as each NB initiates an invariant lineage, generating a stereotyped chain of ganglion mother cells (GMCs), each of which in turn divides once to generate two identified neurons. We have used a laser microbeam or microelectrode to ablate individual cells in ovo and in vitro at various stages of embryogenesis to study how neuronal diversity and specificity are generated during development. Our results suggest that cell interactions between ca. 150 equivalent nECs allow 30 cells to enlarge into NBs, the dominant fate in a hierarchy; the NBs inhibit adjacent nECs and thus cause them to differentiate into various non-neuronal cells; each NB is assigned its unique identity according to its position of enlargement within the neurogenic epithelium; each NB then generates its characteristic chain of GMCs by an invariant cell lineage; and each GMC generates a pair of equivalent progeny, the fate of each individual neuron being determined by both its GMC of origin and interactions with its sibling.  相似文献   

8.
Mammalian neural stem cells generate transit amplifying progenitors that expand the neuronal population, but these type of progenitors have not been studied in Drosophila. The Drosophila larval brain contains approximately 100 neural stem cells (neuroblasts) per brain lobe, which are thought to bud off smaller ganglion mother cells (GMCs) that each produce two post-mitotic neurons. Here, we use molecular markers and clonal analysis to identify a novel neuroblast cell lineage containing "transit amplifying GMCs" (TA-GMCs). TA-GMCs differ from canonical GMCs in several ways: each TA-GMC has nuclear Deadpan, cytoplasmic Prospero, forms Prospero crescents at mitosis, and generates up to 10 neurons; canonical GMCs lack Deadpan, have nuclear Prospero, lack Prospero crescents at mitosis, and generate two neurons. We conclude that there are at least two types of neuroblast lineages: a Type I lineage where GMCs generate two neurons, and a type II lineage where TA-GMCs have longer lineages. Type II lineages allow more neurons to be produced faster than Type I lineages, which may be advantageous in a rapidly developing organism like Drosophila.  相似文献   

9.
Stem cells in the central nervous system were usually considered as relevant for evaluation only in embryonic time. Recent advances in molecular cloning and immunological identification of the different cell types prove the presence of neurogenesis of the new neurons in adult mammals brains. New neurons are born in two areas of the mammal and human brain--sybventricular zone and subgranular zone of dentate gyrus. New born granular neurons of dentate gyrus have a great importance for memory and learning. New neurons originate from precursors which in culture and in situ could also transform into astrocytes and oligodendrocytes, thus fulfill criteria of neural stem cells. In culture, mitotic activity of these stem sells depends on fibroblast growth factor 2 and epidermal growth factor. Depletion of cultural medium of these factors and addition of serum, other growth factors (Platelet-derived growth factor and ciliary neurotrophic factor) leads to generation of neurons and astrocytes. Isolation and clonal analysis of stem cells is based on immunological markers such as nestin, beta-tubulin III, some types of membrane glicoproteids. Identification and visualization of stem cells in brain revealed two populations of cells which have properties of stem cells. In embryonic time, radial glia cells could give origin to neurons, in mature brain cells expressing glial fibrillar acidic protein typical marker of astrocytes fulfill criteria for stem cells. Neural stem cells could transform not only into mature neurons and glial cells but also into blood cells, thus revealing broad spectrum of progenitors from different embryonic tissues. Further progress in this field of neurobiology could give prosperity in the cell therapy of many brain diseases.  相似文献   

10.

Background

The specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections.

Results

We show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity.

Conclusions

Our results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.
  相似文献   

11.
By the end of neurogenesis in Drosophila pupal brain neuroblasts (NBs), nuclear Prospero (Pros) triggers cell cycle exit and terminates NB lifespan. Here, we reveal that in larval brain NBs, an intrinsic mechanism facilitates import and export of Pros across the nuclear envelope via a Ran‐mediated nucleocytoplasmic transport system. In rangap mutants, the export of Pros from the nucleus to cytoplasm is impaired and the nucleocytoplasmic transport of Pros becomes one‐way traffic, causing an early accumulation of Pros in the nuclei of the larval central brain NBs. This nuclear Pros retention initiates NB cell cycle exit and leads to a premature decrease of total NB numbers. Our data indicate that RanGAP plays a crucial role in this intrinsic mechanism that controls NB lifespan during neurogenesis. Our study may provide insights into understanding the lifespan of neural stem cells during neurogenesis in other organisms.  相似文献   

12.
A crucial first step in asymmetric cell division is to establish an axis of cell polarity along which the mitotic spindle aligns. Drosophila melanogaster neural stem cells, called neuroblasts (NBs), divide asymmetrically through intrinsic polarity cues, which regulate spindle orientation and cortical polarity. In this paper, we show that the Ras-like small guanosine triphosphatase Rap1 signals through the Ral guanine nucleotide exchange factor Rgl and the PDZ protein Canoe (Cno; AF-6/Afadin in vertebrates) to modulate the NB division axis and its apicobasal cortical polarity. Rap1 is slightly enriched at the apical pole of metaphase/anaphase NBs and was found in a complex with atypical protein kinase C and Par6 in vivo. Loss of function and gain of function of Rap1, Rgl, and Ral proteins disrupt the mitotic axis orientation, the localization of Cno and Mushroom body defect, and the localization of cell fate determinants. We propose that the Rap1-Rgl-Ral signaling network is a novel mechanism that cooperates with other intrinsic polarity cues to modulate asymmetric NB division.  相似文献   

13.
14.
15.
The Drosophila CNS derives from a population of neural stem cells, called neuroblasts (NBs), which delaminate individually from the neurogenic region of the ectoderm. In the embryonic ventral nerve cord each NB can be uniquely identified and gives rise to a specific lineage consisting of neurons and/or glial cells. This 'NB identity' is dependent on the position of the progenitor cells in the neuroectoderm before delamination. The positional information is provided by the products of segment polarity and dorsoventral (D/V) patterning genes. Subsequently, 'cell fate genes' like huckebein (hkb) and eagle (eg) contribute to the generation of specific NB lineages. These genes act downstream of segment polarity and D/V patterning genes and regulate different processes such as the generation of glial cells and the determination of serotonergic neurons.  相似文献   

16.
Asymmetric cell division is a conserved mechanism to generate cellular diversity during animal development and a key process in cancer and stem cell biology. Despite the increasing number of proteins characterized, the complex network of proteins interactions established during asymmetric cell division is still poorly understood. This suggests that additional components must be contributing to orchestrate all the events underlying this tightly modulated process. The PDZ protein Canoe (Cno) and its mammalian counterparts AF-6 and Afadin are critical to regulate intracellular signaling and to organize cell junctions throughout development. Here, we show that Cno functions as a new effector of the apical proteins Inscuteable (Insc)-Partner of Inscuteable (Pins)-Galphai during the asymmetric division of Drosophila neuroblasts (NBs). Cno localizes apically in metaphase NBs and coimmunoprecipitates with Pins in vivo. Furthermore, Cno functionally interacts with the apical proteins Insc, Galphai, and Mushroom body defect (Mud) to generate correct neuronal lineages. Failures in muscle and heart lineages are also detected in cno mutant embryos. Our results strongly support a new function for Cno regulating key processes during asymmetric NB division: the localization of cell-fate determinants, the orientation of the mitotic spindle, and the generation of unequal-sized daughter cells.  相似文献   

17.
Drosophila mushroom bodies (MB) are bilaterally symmetric multilobed brain structures required for olfactory memory. Previous studies suggested that neurotransmission from MB neurons is only required for memory retrieval. Our unexpected observation that Dorsal Paired Medial (DPM) neurons, which project only to MB neurons, are required during memory storage but not during acquisition or retrieval, led us to revisit the role of MB neurons in memory processing. We show that neurotransmission from the alpha'beta' subset of MB neurons is required to acquire and stabilize aversive and appetitive odor memory, but is dispensable during memory retrieval. In contrast, neurotransmission from MB alphabeta neurons is only required for memory retrieval. These data suggest a dynamic requirement for the different subsets of MB neurons in memory and are consistent with the notion that recurrent activity in an MB alpha'beta' neuron-DPM neuron loop is required to stabilize memories formed in the MB alphabeta neurons.  相似文献   

18.
Drosophila brains contain numerous neurons that form complex circuits. These neurons are derived in stereotyped patterns from a fixed number of progenitors, called neuroblasts, and identifying individual neurons made by a neuroblast facilitates the reconstruction of neural circuits. An improved MARCM (mosaic analysis with a repressible cell marker) technique, called twin-spot MARCM, allows one to label the sister clones derived from a common progenitor simultaneously in different colors. It enables identification of every single neuron in an extended neuronal lineage based on the order of neuron birth. Here we report the first example, to our knowledge, of complete lineage analysis among neurons derived from a common neuroblast that relay olfactory information from the antennal lobe (AL) to higher brain centers. By identifying the sequentially derived neurons, we found that the neuroblast serially makes 40 types of AL projection neurons (PNs). During embryogenesis, one PN with multi-glomerular innervation and 18 uniglomerular PNs targeting 17 glomeruli of the adult AL are born. Many more PNs of 22 additional types, including four types of polyglomerular PNs, derive after the neuroblast resumes dividing in early larvae. Although different offspring are generated in a rather arbitrary sequence, the birth order strictly dictates the fate of each post-mitotic neuron, including the fate of programmed cell death. Notably, the embryonic progenitor has an altered temporal identity following each self-renewing asymmetric cell division. After larval hatching, the same progenitor produces multiple neurons for each cell type, but the number of neurons for each type is tightly regulated. These observations substantiate the origin-dependent specification of neuron types. Sequencing neuronal lineages will not only unravel how a complex brain develops but also permit systematic identification of neuron types for detailed structure and function analysis of the brain.  相似文献   

19.
The Drosophila ventral nerve cord is comprised of numerous neuronal lineages, each derived from a stereotypically positioned neuroblast (NB). At the embryonic stage the unique identities of each NB, and several of their neuronal progeny, are well characterized by spatial and temporal expression patterns of molecular markers. These patterns of expression are not preserved at the larval stage and thus the identity of adult-specific lineages remains obscure. Recent clonal analysis using MARCM has identified 24 adult-specific lineages arising from thoracic NBs at the larval stage. In this study, we have explored a role for the Delta protein in development of the post-embryonic Drosophila ventral nerve cord. We find that Delta expression identifies 7 of the 24 adult-specific lineages of the thoracic ganglia by being highly enriched in clusters of newly born post-mitotic neurons and their neurite bundles. The Delta lineages constitute the majority of bundles projecting to the ventral neuropil, consistent with a role in processing leg sensory information. Targeted knockdown of Delta in neurons using RNAi results in significantly decreased leg chemosensory response and a relatively unaffected leg mechanosensory response. Delta RNAi knockdown in Delta lineages also gives a more diffuse bundle terminal morphology while the overall path-finding of neurite bundles is unaffected. We also identify a male-specific Delta lineage in the terminal abdominal ganglia, implicating a role for Delta in development of sexually dimorphic neural networks. Examples of Delta-expressing neurites contacting Notch-expressing glia are also seen, but are not common to all Delta lineages. Altogether, these data reveal a fundamental pattern of Delta expression that is indicative of an underlying developmental program that confers identity to adult lineage neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号