首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carrier ampholytes covering a pH range corresponding to, or narrower than, the span of the immobilized pH gradient (IPG) are a most suitable electrodic solution for IPGs. They are able to collect, and completely remove from the gel, much higher amounts of non-buffering ions than are solutions of acidic and basic amino acids. This makes it possible to directly run IPGs just after their polymerization, without the need of a washing step to remove catalysts and unreacted Immobiline monomers. The same applies most advantageously when the gel formulation includes urea and/or detergents. Ions contributed by the sample solution are also prevented from casting high-conductivity ridges around the electrodes, without any need either of a dialysis step or of an increased slab size with pH plateaus. The migration of the sample proteins toward their equilibrium position is faster in the presence of carrier ampholytes. The effective concentrations of the latter are in the range 0.3-1%.  相似文献   

2.
A method for preparative isoelectric focusing of 0.1-10 g amounts of proteins is described. For anticonvective stabilization of the pH gradient, layers of granulated gels (E.G. Sephadex or Bio-Gel) of variable length, width and thickness were used either on glass plates or in troughs. Load capacity, defined as the amount of protein per ml gel suspension, was determined to be 5-10 mg per ml for total protein, irrespective of the pH range of the carrier ampholytes. For single proteins load capacities of 0.25-1 mg per ml were found for pH 3-10 carrier ampholytes, and 2-4 mg per ml for narrow pH range ampholytes. Experiments on a quartz plate followed by densitometric evaluation in situ at 280 nm have demonstrated that it is possible to proceed from analytical thin-layer isoelectric focusing to preparative separations without loss of resolution, just by changing the dimension of the gel layer and increasing the protein load. Improved resolution which facilitates isolation of isoelectrically homegenious components could be achieved on a 40 cm long separation distance. The geometry of a layer is favourable to heat dissipation and this permits the use of high voltage gradients. Recovery of the focused proteins is high an elution simple. The efficiency of the method is illustrated by examples showing separations of single proteins and protein mixtures.  相似文献   

3.
Following electrophoresis or isoelectric focusing in gels of polyacrylamide the protein band of interest is cut out and placed above a sucrose gradient column, containing carrier ampholytes (Pharmalyte). By electrophoresis, isoelectric focusing or displacement electrophoresis the proteins migrate out of the gel slice and into the isoelectric focusing column for concentration and further purification. From this column, the proteins can be withdrawn and their isoelectric points determined. Even after staining with Coomassie Brilliant Blue at least some proteins can be recovered by this technique and used for further analyses, for instance amino acid determinations. The focusing in a pH gradient by carrier ampholytes can be replaced by an electrophoresis in a conductivity gradient column. However, in comparison with isoelectric focusing, this concentration technique has the drawback of not permitting further purification of the eluted protein.  相似文献   

4.
Görg A  Boguth G  Köpf A  Reil G  Parlar H  Weiss W 《Proteomics》2002,2(12):1652-1657
Due to their heterogeneity and huge differences in abundance, the detection and identification of all proteins expressed in eukaryotic cells and tissues is a major challenge in proteome analysis. Currently the most promising approaches are sample prefractionation procedures prior to narrow pH range two-dimensional gel electrophoresis (IPG-Dalt) to reduce the complexity of the sample and to enrich for low abundance proteins. We recently developed a simple, cheap and rapid sample prefractionation procedure based on flat-bed isoelectric focusing (IEF) in granulated gels. Complex sample mixtures are prefractionated in Sephadex gels containing urea, zwitterionic detergents, dithiothreitol and carrier ampholytes. After IEF, up to ten gel fractions alongside the pH gradient are removed with a spatula and directly applied onto the surface of the corresponding narrow pH range immobilized pH gradient (IPG) strips as first dimension of two-dimensional (2-D) gel electrophoresis. The major advantages of this technology are the highly efficient electrophoretic transfer of the prefractionated proteins from the Sephadex IEF fraction into the IPG strip without any sample dilution, and the full compatibility with subsequent IPG-IEF, since the prefactionated samples are not eluted, concentrated or desalted, nor does the amount of the carrier ampholytes in the Sephadex fraction interfere with subsequent IPG-IEF. Prefractionation allows loading of higher protein amounts within the separation range applied to 2-D gels and facilitates the detection of less abundant proteins. Also, this system is highly flexibile, since it allows small scale and large scale runs, and separation of different samples at the same time. In the current study, this technology has been successfully applied for prefractionation of mouse liver proteins prior to narrow pH range IPG-Dalt.  相似文献   

5.
It is possible to measure pH values in immobilized pH gradients (IPG) when the polyacrylamide matrix is made to contain an additional, carrier ampholyte-generated pH gradient. After an IPG run, 5 mm gel segments, along the separation axis, are cut and eluted in 300 microliter of 10 mM KCl and the pH read with a standard pH meter. When using ultranarrow pH gradients, larger gel segments (ca. 265 microliter) are eluted in 900 microliter of 100 mM KCl and the pH assessed with a differential pH meter. In the latter case, either internal or external standards are used as a reference, or starting point, to convert delta pH values into an actual pH curve. The reproducibility of the system is better than +/- 0.05 pH units, with a ca. 15% error over a 0.3 pH unit span. In ultranarrow pH gradients, it is imperative to use mixtures of all commercially available carrier ampholytes, so as to smoothen conductivity and buffering capacity gaps. By the present method, it is also possible to convert a wide (2-3 pH unit) carrier ampholyte interval into a narrow (0.2-0.3 pH unit) one.  相似文献   

6.
Plant tissues are made up of a broad range of proteins with a variety of properties. After extraction, solubilization of a diverse range of plant proteins for efficient proteomic analysis using two-dimensional electrophoresis is a challenging process. We tested the efficiency of 12 solubilization buffers in dissolving acidic and basic proteins extracted from mature seeds of wheat. The buffer containing two chaotropes (urea and thiourea), two detergents (3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate and N-decyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate), two reducing agents (dithiothreitol and tris (2-carboxyethyl) phosphine hydrochloride) and two types of carrier ampholytes (BioLyte pH 4-6 and pH 3-10) solubilized the most acidic proteins in the pH range between 4 and 7. The buffer made up of urea, thiourea, 3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate, DeStreak reagent (Amersham Biosciences, Uppsala, Sweden) and immobilized pH gradient buffer, pH 6-11 (Amersham Biosciences) solubilized the most basic proteins in the pH range between 6 and 11. These two buffers produced two-dimensional gels with high resolution, superior quality and maximum number of detectable protein (1425 acidic protein and 897 basic protein) spots.  相似文献   

7.
1. The C(1) component that was isolated from a Trichoderma koningii cellulase preparation (Wood, 1968) by chromatography on DEAE-Sephadex with a salt gradient was still associated with a trace of CM-cellulase activity (determined by reducing-sugar and viscometric methods). 2. Further chromatography on DEAE-Sephadex, with a pH gradient instead of a salt gradient, provided a C(1) component that could still produce reducing sugars from a solution of CM-cellulose (to a very limited extent), but which could no longer decrease the viscosity (i.e. under the assay conditions employed). 3. No evidence for the non-identity of C(1) component and the trace of CM-cellulase activity could be found when electrofocusing was done in a stabilized pH gradient covering three pH units (pH3-6) or, alternatively, only 0.5 pH unit (pH3.72-4.25). 4. The two protein peaks that were separated by electrofocusing in carrier ampholytes covering only 0.5 pH unit (isoelectric pH values of 3.80 and 3.95) were shown to be isoenzymes of the C(1) component: they differed in the extent to which they were associated with carbohydrate (9% and 33%). 5. The purified C(1) component had little ability to attack CM-cellulose or highly ordered forms of cellulose, but degraded phosphoric acid-swollen cellulose readily: cellobiose was the principal product of the hydrolysis (97%). 6. Dewaxed cotton fibre was degraded to the extent of 15% when exposed to high concentrations of C(1) component over a prolonged period: cellobiose was again the principal sugar present in the supernatant (96%). 7. Cellotetraose and cellohexaose were hydrolysed almost exclusively to cellobiose. 8. Evidence indicates that the C(1) component is a beta-1,4-glucan cellobiosylhydrolase.  相似文献   

8.
Ultrathin layers of polyacrylamide gel bound to glass can be washed, air-dried, and stored for at least 1 year before rewetting in ampholyte solutions for isoelectric focusing. Short-term drying affects neither fluorescent banding of the ampholytes (not evident in conventional gels) nor resolution of complex protein mixtures while prolonged storage seems to have no deleterious effects. Layers are fully functional after soaking for 10 min in solutions that may contain 8 M urea and 10% sorbitol. Rewetting allows the rapid survey of different ampholytes, gradient stabilizers, separator compounds, or protein reagents and is adaptable to concentration modification of the pH gradient (alone or with a gel overlay), to focusing in a transverse urea gradient, and to electrophoresis across a preformed pH gradient. The procedure avoids protein modification by residual polymerizing reagents while adding to the convenience and economy of using ultrathin layers in relatively small formats.  相似文献   

9.
Two capillary electrophoretic methods were developed and evaluated for measurement of glycated hemoglobin A1c (HbA1c). First, a capillary electrophoresis analysis is performed with a sodium tetraborate buffer (pH 9.3) as background electrolyte in a neutrally coated capillary. HbA1c is separated from HbA0 due to specific interactions of borate anions with the cisdiol pattern in the saccharide moiety of glycohemoglobin. Second, a capillary isoelectric focusing method, which exploits a difference in pI values of HbA0 and HbA1c, is performed with Servalyt pH 6–8 or alternatively with Biolyte pH 6–8 carrier ampholytes spiked with a narrow pH cut of pH 7.2 prepared by preparative fractionation of Servalyt pH 4–9 carrier ampholytes. Both methods reflect recent developments in the methodology of capillary electrophoresis. They allow quantifying HbA1c in generic capillary electrophoresis analyzer with specificity that is consistent with previously reported electrophoretic assays in slab gels and capillaries.  相似文献   

10.
When hydrophobic samples, or membrane proteins, are disaggregated in buffers containing detergents (e.g. Nonidet P-40), urea and 2-mercaptoethanol, and applied at the cathodic end of a gel cylinder or slab for isoelectric separation, as routinely performed for two-dimensional techniques, a severe disturbance of the alkaline region of the pH gradient ensues. This phenomenon has been attributed to high protein loads, which supposedly overcome the buffering power of isoelectric carrier ampholytes. On the contrary, in the present study it has been found that this suppression of the alkaline end of the pH gradient is due to 2-mercaptoethanol, which is a buffer with pK 9.5. This compound ionizes at the basic gel end and is driven electrophoretically along the pH gradient, sweeping away, along its path, and focused carrier ampholytes.  相似文献   

11.
The solubilization of a large array of proteins before electrophoresis itself is a very critical point for proteomic analyses. We compared the efficiency of several different solubilization buffers. From this work, we defined a very efficient solubilization buffer, including two chaotropes, two reducing agents (R2), two detergents (D2), and two kinds of carrier ampholytes in combination. This so-called R2D2 buffer (5 M urea, 2 M thiourea, 2% 3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate, 2% N-decyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate, 20 mM dithiothreitol, 5 mM Tris(2-carboxyethyl) phosphine, 0.5% carrier ampholytes 4-6.5, 0.25% carrier ampholytes 3-10) proved to be very efficient for a large range of different samples and allowed us to obtain two-dimensional gels of high resolution and quality.  相似文献   

12.
The evolution of isoelectric focusing is traced back over the years, from a somewhat shaky origin to present-day immobilized pH gradients. Four generations of methodology are classified and discussed: (A) Kolin's approach, consisting of a two-step technique, generation of a pH gradient by diffusion followed by a rapid electrokinetic protein separation; (B) Svensson-Rilbe's approach, consisting of creating a pH gradient in an electric field by utilizing as buffers a multitude of carrier ampholytes, i.e. of amphoteric species possessing good buffering capacity and conductivity at their pI; (C) immobilized pH gradients, by which non-amphoteric buffers and titrants (acrylamido weak acids and bases), titrated around their pK values, are grafted (insolubilized) onto a polyacrylamide gel matrix and (D) mixed-bed carrier ampholyte-Immobiline gel, by which a soluble, carrier ampholyte generated pH gradient coexists in the same matrix with an insoluble, Immobiline generated, pH gradient.  相似文献   

13.
A new technique for generating pH gradients in isoelectric focusing is described, based on the principle that the buffering groups are covalently linked to the matrix used as anticonvective medium. For the generation of this type of pH gradient in polyacrylamide gels, a set of buffering monomers, called Immobiline (in analogy with Ampholine), is used. The pH gradient gels are cast in the same way as pore gradient gels, but instead of varying the acrylamide content, the light and heavy solutions are adjusted to different pH values with the aid of the Immobiline buffers. Available Immobiline species make it possible to generate any narrow linear pH gradient between pH 3 and 10. The behaviour of these types of gradients in isoelectric focusing is described.Immobilized pH gradients show a number of advantages compared with carrier ampholyte generated pH gradients. The most important are: (1) the cathodic drift is completely abolished; (2) they give higher resolution and higher loading capacitu; (3) they have uniform conductivity and buffering capacity; (4) they represent a milieu of known and controlled ionic strenght.  相似文献   

14.
Two-dimensional polyacrylamide gel electrophoresis of membrane proteins   总被引:2,自引:0,他引:2  
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is one of the most powerful separation techniques for complex protein solutions. The proteins are first separated according to their isoelectric point, driven by an electric field across a pH gradient. The pH gradient necessary for the separation according to isoelectric point (pL) is usually established by electrophoresing carrier ampholytes prior to and/or concomitantly with the sample. The second dimension is usually a separation according to molecular size. Mostly this separation is performed after complete denaturation of the proteins by sodium dodecyl sulfate and 2-mercaptoethanol (SDS-PAGE). This standard method has considerable disadvantages when relatively hydrophobic membrane proteins are to be separated: cathodic drift, resulting in nonreproducible separation, and the denaturation of the protein, mostly making it impossible to detect native properties of the proteins after separation (e.g., enzymatic activity, antigenicity, intact multimers, and so on). The protocols presented here take care of most of these obstacles. However, there is probably no universal procedure that can guarantee success at first try for any mixture of membrane proteins; some experimentation will be necessary for optimization. Two procedures are each presented: a denaturing (with urea) and a nondenaturing method for IEF in immobilized pH gradient gels using Immobilines, and a denaturing (with SDS and 2-mercaptoethanol) and a nondenaturing technique (with CHAPS) for the second dimension. Essential tips and tricks are presented to keep frustrations of the newcomer at a low level.  相似文献   

15.
Amino acids with a largepI -pKp difference are known to be poor carrier ampholytes in electrofocusing, exhibiting isoelectric zones with poor conductivity across as many as 4 pH units. Accordingly, radioactive amino acids of this type, e.g., glycine, are found to be distributed over the entire pH gradient formed by Ampholine in electrofocusing gels, while radioactive amino acids like histidine or glutamic acid with small pI - pKp differences form single peaks at or near their pI's. When poor carrier ampholyte amino acids are subjected to gel electrofocusing in 0.1 KCl, their distribution sharpens into single peaks, at or near the pI, indistinguishable from those of the good carrier ampholyte amino acids. At an intermediate stage of peak coalescence of the original broad distributions of poor carrier ampholyte amino acids, in 0.01 KCl, acidic and basic peaks of amino acid can be observed, possibly analogous to acidie and basic distributions previously observed with labeled Ampholine. The rate of peak coalescence of anionic amino acids seems higher than that of the cationic species. The mechanism by which high ionic strength facilitates the condensation of poor carrier ampholyte amino acids at their pI remains unknown. Possibly, the current within zones of poor carrier ampholyte amino acids is insufficient, or poor carrier ampholyte amino acids are not sufficiently charged, to allow for electrophoretic migration of the bulk of loaded amino acid to its isoelectric position, unless the current density is increased by electrofocusing at high ionic strength. Alternatively, 0.1 KCl may interfere with electrovalent interactions between amino acids and isoelectric carrier ampholyte zones, analogous to the action of urea in preventing the interaction between polyanions and carrier ampholytes.  相似文献   

16.
Ferritin was subjected to isoelectric focussing (IEF) on agarose gels containing different commercial carrier ampholytes. In two gels protein staining revealed banded patterns which differed from one another, while a third gel yielded zones rather than discrete bands, indicating that the bands may be artefacts.The differences between banded patterns were studied by isolating bands from an IEF gel and refocussing these on gels containing either the original ampholyte or a different ampholyte preparation. Striking differences were noted.Chromatofocussing of ferritin resulted in the elution of broad peaks between the same pH limits as indicated by IEF patterns.  相似文献   

17.
Fractionation of highly purified Cl. perfringens type A enterotoxin by scanning isoelectric focusing (SIF) and isotachophoresis (IT) in polyacrylamide gels is described for the first time. The use of 2% ampholytes pH 3–6 allowed the separation of enterotoxin into 2 species. The major component had an isoelectric point of 4·5 and possessed antigenic as well as functional activity. The minor component of enterotoxin, at equivalent concentrations, was devoid of any demonstrable biological activity had an isoelectric point of 4·6 and appeared to represent approximately 15% of the purified enterotoxin. With ampholytes pH 3·5–10 the minor and major components were focused at different times than when ampholine pH 3–6 was employed. Electrofocusing of enterotoxin in the presence of 6 M-urea did not alter the SIF pattern. During IT the major component of enterotoxin migrated ahead of the minor component. The 2 proteins were completely separated. Isotachophoretic separations required 0·023 M-phosphate pH 6·0 as the leading ion, 0·079 M-Tris as the counter-ion, 0·2 M-glycine (in Tris pH 8·1) as the terminating ion, 30 γ carrier ampholytes pH 3·5–10, 263 μg enterotoxin, 4% acrylamide and a current of 5 mA per gel column.  相似文献   

18.
19.
Joule heating is a limiting factor when separating proteins in capillary zone electrophoresis (CZE). Low conductivity buffers, are required for high-speed separations. We investigated the use of carrier ampholytes (CA) as background electrolytes (BGE) in CZE. We prepared 25 "narrow pH cuts" of wide pH range (3-10) CA mixture in order to know if these fractions were suitable to be used as BGE in CZE. Each fraction was characterised by CZE analysis, giving an idea of its heterogeneity (number and relative abundance of molecular ampholytes). Conductivities and buffering capacities of each fraction have been also measured. Our conclusion is that "narrow pH cuts" of CA might be well suited buffers for electrophoretic separations.  相似文献   

20.
This paper reports the utilization of a potential gradient array detector for monitoring the dynamics of the electric field during isoelectric focusing. Transient and steady state electric field profiles are presented for synthetic carrier ampholyte mixtures with a wide (approximately 3-10) pH range. Two available commercial products (Ampholine and Pharmalyte) and a laboratory synthesized mixture (PEHA ampholytes) are compared. The formation of conductivity gaps and their migration toward the cathode in extended experiments (cathodic drift) can be visualized with this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号