首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of protein folding was studied with trypsin inhibitor by deviation analysis (1). The results showed that: i) Qualitatively, the main features of the structure, determined by this method, coincided with the structure determined by X-ray crystallography (3). This structure is, however, not topological but functional, and may elucidate the functional relations between various parts of the protein.  相似文献   

2.
The three-dimensional structure of rat liver formaldehyde dehydrogenase (FALDH), previously known as class III alcohol dehydrogenase, was constructed using computer graphics and computer programs developed for model building. The construction is based on horse liver alcohol dehydrogenase (EE-ADH), whose structure has been elucidated by X-ray crystallography. The high sequence homology between the two enzymes makes knowledge-based modelling feasible in this case. The model shows a remarkable similarity to horse liver alcohol dehydrogenase especially in the NAD-binding domain. Certain mutations, and the one insertion in FALDH compared to EE-ADH in particular, have cause important changes in the substrate binding site, and thus aliphatic alcohols have been replaced by hemi-thioacetals as favourable substrates.  相似文献   

3.
The structure of the monomeric form of perfringolysin O solved by X-ray crystallography has been used to model the very large transmembrane pore formed when this bacterial protein toxin assembles in cholesterol-containing membranes. The structure is a notable advance, but it may not provide the whole story.  相似文献   

4.
The solution structure and backbone dynamics of Cu(I) pseudoazurin, a 123 amino acid electron transfer protein from Paracoccus pantotrophus, have been determined using NMR methods. The structure was calculated to high precision, with a backbone RMS deviation for secondary structure elements of 0.35+/-0.06 A, using 1,498 distance and 55 torsion angle constraints. The protein has a double-wound Greek-key fold with two alpha-helices toward its C-terminus, similar to that of its oxidized counterpart determined by X-ray crystallography. Comparison of the Cu(I) solution structure with the X-ray structure of the Cu(II) protein shows only small differences in the positions of some of the secondary structure elements. Order parameters S2, measured for amide nitrogens, indicate that the backbone of the protein is rigid on the picosecond to nanosecond timescale.  相似文献   

5.
The X-ray crystal structure of sangivamycin, a potent nucleoside inhibitor of protein kinases, has been determined. Sangivamycin crystallizes from water with its purine ring in a conformation anti to its ribose sugar. Such an anti conformation has been detected in solution for sangivamycin and other potent protein kinase inhibitors and appears to correlate with inhibitor potency [(1990) Biochemistry (in press)]. An intramolecular hydrogen bond between purine ring substituents is detected in the X-ray structure and may be an important structural feature of sangivamycin related to its degree of inhibition of rhodopsin kinase and of protein kinases C and A.  相似文献   

6.
The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity.  相似文献   

7.
Counterdiffusion crystallization in capillary is a very simple, cost-effective, and practical procedure for obtaining protein crystals suitable for X-ray data analysis. Its principles have been derived using well-known concepts coupling the ideas of precipitation and diffusion mass transport in a restricted geometry. The counterdiffusion process has been used to simultaneously screen for optimal conditions for protein crystal growth, incorporate strong anomalous scattering atoms, and mix in cryogenic solutions in a single capillary tube. The crystals obtained in the capillary have been used in situ for X-ray analysis. The implementation of this technique linked to the advancement of current crystallography software leads to a powerful structure determination method consolidating crystal growth, X-ray data collection, and ab initio phase determination into one without crystal manipulation. We review the historical progress of counterdiffusion crystallization, its application to X-ray crystallography, and ongoing tool development for high-throughput protein structure determination.  相似文献   

8.
The three-dimensional structure of P2 myelin protein.   总被引:7,自引:0,他引:7       下载免费PDF全文
T A Jones  T Bergfors  J Sedzik    T Unge 《The EMBO journal》1988,7(6):1597-1604
The three-dimensional structure of P2 protein from peripheral nervous system myelin has been determined at 2.7 A resolution by X-ray crystallography. The single isomorphous replacement/anomalous map was interpreted using skeletonized electron density on a computer graphics system. An atomic model was built using fragment fitting. The structure forms a compact 10-stranded up-and-down beta-barrel which encapsulates residual electron density that we interpret as a fatty acid molecule. This beta-barrel shows some similarity to, but is different from, the retinol binding protein family of structures. The relationship of the P2 structure to a family of cytoplasmic, lipid binding proteins is described.  相似文献   

9.
The three-dimensional structure of retinol-binding protein   总被引:13,自引:5,他引:13       下载免费PDF全文
The complex of retinol with its carrier protein, retinol-binding protein (RBP) has been crystallized and its three-dimensional structure determined using X-ray crystallography. Its most striking feature is an eight-stranded up-and-down beta barrel core that completely encapsulates the retinol molecule. The retinol molecule lies along the axis of the barrel with the beta-ionone ring innermost and the tip of the isoprene tail close to the surface.  相似文献   

10.
Abstract

The human serotonin transporter (hSERT) played a significant role in neurological process whose structural basis had been analysed for many years. Recently, the first homology model was constructed for hSERT based on the crystal structure of drosophila melanogaster dopamine transporter was published, and the inhibitory mechanism underlying the binding mode between hSERT and approved antidepressants was substantially investigated by molecular dynamics (MD) simulation. Right after this publication, the X-ray crystallographic structures of hSERT were reported, which provided a good opportunity to reassess the performance of previous simulation. In this study, the analyses of side-chain contact map, stereochemical quality and ligand-binding pocket were firstly conducted, which revealed that the constructed homology model of hSERT could successfully reproduce the reported crystal structure. Secondly, the approved antidepressant escitalopram was docked into the X-ray structure, and its binding pose was consistent with the reported docking pose in the homology model. Finally, MD simulation were performed based on the crystal structure of hSERT, and structural features revealed as critical for escitalopram-hSERT interaction by previous simulation were successfully recaptured. Thus, the newly reported X-ray crystal structure of hSERT was precisely predicted by computational model, which demonstrated its reliability in understanding the pharmacology of other human monoamine transporters whose 3-D structure remained unknown.  相似文献   

11.
The invention of free electron X-ray lasers has opened a new era for membrane protein structure determination with the recent first proof-of-principle of the new concept of femtosecond nanocrystallography. Structure determination is based on thousands of diffraction snapshots that are collected on a fully hydrated stream of nanocrystals. This review provides a summary of the method and describes how femtosecond X-ray crystallography overcomes the radiation-damage problem in X-ray crystallography, avoids the need for growth and freezing of large single crystals while offering a new method for direct digital phase determination by making use of the fully coherent nature of the X-ray beam. We briefly review the possibilities for time-resolved crystallography, and the potential for making 'molecular movies' of membrane proteins at work.  相似文献   

12.
Circular dichroism (CD) is a spectroscopic technique widely used for estimating protein secondary structures in aqueous solution, but its accuracy has been doubted in recent work. In the present paper, the contents of nine globular proteins with known secondary structures were determined by CD spectroscopy and Fourier transform infrared spectroscopy (FTIR) in aqueous solution. A large deviation was found between the CD spectra and X-ray data, even when the experimental conditions were optimized. The content determined by FTIR was in good agreement with the X-ray crystallography data. Therefore, CD spectra are not recommended for directly calculating the content of a protein’s secondary structure.  相似文献   

13.
The structure of A1-III from a Sphingomonas species A1 complexed with a trisaccharide product (4-deoxy-l-erythro-hex-4-enepyranosyluronate-mannuronate-mannuronic acid) was determined by X-ray crystallography at 2.0 A with an R-factor of 0.16. The final model of the complex form comprising 351 amino acid residues, 245 water molecules, one sulfate ion and one trisaccharide product exhibited a C(alpha) r.m.s.d. value of 0.154 A with the reported apo form of the enzyme. The trisaccharide was bound in the active cleft at subsites -3 approximately -1 from the non-reducing end by forming several hydrogen bonds and van der Waals interactions with protein atoms. The catalytic residue was estimated to be Tyr246, which existed between subsites -1 and +1 based on a mannuronic acid model oriented at subsite +1.  相似文献   

14.
We report the design and engineering of a robust, reagentless fluorescent glucose biosensor based on the periplasmic glucose-binding protein obtained from Thermotoga maritima (tmGBP). The gene for this protein was cloned from genomic DNA and overexpressed in Escherichia coli, the identity of its cognate sugar was confirmed, ligand binding was studied, and the structure of its glucose complex was solved to 1.7 Angstrom resolution by X-ray crystallography. TmGBP is specific for glucose and exhibits high thermostability (midpoint of thermal denaturation is 119 +/- 1 degrees C and 144 +/- 2 degrees C in the absence and presence of 1 mM glucose, respectively). A series of fluorescent conjugates was constructed by coupling single, environmentally sensitive fluorophores to unique cysteines introduced by site-specific mutagenesis at positions predicted to be responsive to ligand-induced conformational changes based on the structure. These conjugates were screened to identify engineered tmGBPs that function as reagentless fluorescent glucose biosensors. The Y13C*Cy5 conjugate is bright, gives a large response to glucose over concentration ranges appropriate for in vivo monitoring of blood glucose levels (1-30 mM), and can be immobilized in an orientation-specific manner in microtiter plates to give a reversible response to glucose. The immobilized protein retains its response after long-term storage at room temperature.  相似文献   

15.
Progress in the analysis of membrane protein structure and function   总被引:8,自引:0,他引:8  
Structural information on membrane proteins is sparse, yet they represent an important class of proteins that is encoded by about 30% of all genes. Progress has primarily been achieved with bacterial proteins, but efforts to solve the structure of eukaryotic membrane proteins are also increasing. Most of the structures currently available have been obtained by exploiting the power of X-ray crystallography. Recent results, however, have demonstrated the accuracy of electron crystallography and the imaging power of the atomic force microscope. These instruments allow membrane proteins to be studied while embedded in the bi-layer, and thus in a functional state. The low signal-to-noise ratio of cryo-electron microscopy is overcome by crystallizing membrane proteins in a two-dimensional protein-lipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at sub-nanometer resolution, and their conformational states to be sampled. This review summarizes the steps in membrane protein structure determination and illuminates recent progress.  相似文献   

16.
A strategy that combines limited proteolysis experiments and mass spectrometric analysis of the fragments generated has been developed to probe protease-accessible sites on the protein surface. This integrated approach has been employed to investigate the tertiary structure of the Minibody, a de novo designed 64-residue protein consisting of a beta-sheet scaffold based on the heavy-chain variable-domain structure of a mouse immunoglobulin and containing two segments corresponding to the hypervariable H1 and H2 regions. The low solubility of the protein prevented a detailed characterization by NMR and/or X-ray. Different proteases were used under strictly controlled conditions and the cleavage sites were mapped onto the anticipated Minibody model, leading to the identification of the most exposed regions. A single-residue mutant was constructed and characterized, following the same procedure, showing a slightly higher correspondence with the predicted model. This strategy can be used to effectively supplement NMR and X-ray investigations of protein tertiary structure, where these procedures cannot provide definitive data, or to verify and refine protein models.  相似文献   

17.
Epstein-Barr virus (EBV) belongs to the gamma-herpesvirinae subfamily of the Herpesviridae. The protease domain of the assemblin protein of herpesviruses forms a monomer-dimer equilibrium in solution. The protease domain of EBV was expressed in Escherichia coli and its structure was solved by X-ray crystallography to 2.3A resolution after inhibition with diisopropyl-fluorophosphate (DFP). The overall structure confirms the conservation of the homodimer and its structure throughout the alpha, beta, and gamma-herpesvirinae. The substrate recognition could be modelled using information from the DFP binding, from a crystal contact, suggesting that the substrate forms an antiparallel beta-strand extending strand beta5, and from the comparison with the structure of a peptidomimetic inhibitor bound to cytomegalovirus protease. The long insert between beta-strands 1 and 2, which was disordered in the KSHV protease structure, was found to be ordered in the EBV protease and shows the same conformation as observed for proteases in the alpha and beta-herpesvirus families. In contrast to previous structures, the long loop located between beta-strands 5 and 6 is partially ordered, probably due to DFP inhibition and a crystal contact. It also contributes to substrate recognition. The protease shows a specific recognition of its own C terminus in a binding pocket involving residue Phe210 of the other monomer interacting across the dimer interface. This suggests conformational changes of the protease domain after its release from the assemblin precursor followed by burial of the new C terminus and a possible effect onto the monomer-dimer equilibrium. The importance of the processed C terminus was confirmed using a mutant protease carrying a C-terminal extension and a mutated release site, which shows different solution properties and a strongly reduced enzymatic activity.  相似文献   

18.
The location, structure and protein environment of the Mn4Ca2+ cluster, which catalyses the light-driven, water-splitting reaction of photosystem II, has been revealed by X-ray crystallography. However, owing to the low resolutions of the crystal structures reported to date, and the possibility of radiation damage at the catalytic centre, the precise position of each metal ion remains unknown. To some extent, these problems have been overcome by applying spectroscopic techniques like extended X-ray absorption fine structure. Taking into account the most recent results obtained with these two X-ray-based techniques, we have attempted to refine models of the structure of the Mn4Ca2+ cluster and its protein environment.  相似文献   

19.
The structure of the glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from Trypanosoma cruzi complexed with chalepin, a natural product from Pilocarpus spicatus, has been determined by X-ray crystallography to 1.95 Å resolution. The structure is in the apo form without cofactors in the subunits of the tetrameric gGAPDH in the asymmetric unit. Unequivocal density corresponding to the inhibitor was clearly identified in one monomer. The final refined model of the complex shows extensive conformational changes when compared with the native structure. The mode of binding of chalepin to gGAPDH and its implications for inhibitor design are discussed.  相似文献   

20.
The crystal structure of the reduced form of the enzyme p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, complexed with its substrate p-hydroxybenzoate, has been obtained by protein X-ray crystallography. Crystals of the reduced form were prepared by soaking crystals of the oxidized enzyme-substrate complex in deaerated mother liquor containing 300-400 mM NADPH. A rapid bleaching of the crystals indicated the reduction of the enzyme-bound FAD by NADPH. This was confirmed by single crystal spectroscopy. X-ray data to 2.3 A were collected on oscillation films using a rotating anode generator as an X-ray source. After data processing and reduction, restrained least squares refinement using the 1.9 A structure of the oxidized enzyme-substrate complex as a starting model, yielded a crystallographic R-factor of 14.8% for 11,394 reflections. The final model of the reduced complex contains 3,098 protein atoms, the FAD molecule, the substrate p-hydroxybenzoate and 322 solvent molecules. The structures of the oxidized and reduced forms of the enzyme-substrate complex were found to be very similar. The root-mean-square discrepancy for all atoms between both structures was 0.38 A. The flavin ring is almost completely planar in the final model, although it was allowed to bend or twist during refinement. The observed angle between the benzene and the pyrimidine ring is 2 degrees. This value should be compared with observed values of 10 degrees for the oxidized enzyme-substrate complex and 19 degrees for the enzyme-product complex. The position of the substrate is virtually unaltered with respect to its position in the oxidized enzyme. No trace of a bound NADP+ or NADPH molecule was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号