首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between the inhibitor protein and the catalytic subunit of the cAMP-dependent protein kinase has been investigated by steady state kinetics and by an assessment of the requirement of this interaction for ATP. By analysis for tightly bound inhibitors, inhibition by the inhibitor protein was shown to be competitive versus peptide substrate and uncompetitive versus Mg X ATP2-. This, together with the observations of Gronot et al. (Gronot, J., Mildvan, A.S., Bramson, H. N., Thomas, N., and Kaiser, E.T. (1981) Biochemistry 20, 602-610) and those given in the accompanying paper (Whitehouse, S., Feramisco, J.R., Casnellie, J.E., Krebs, E.G., and Walsh, D.A. (1983) J. Biol. Chem. 258, 3693-3701), would indicate that the probable reaction mechanism of the protein kinase is ordered with the nucleotide binding first and that the inhibitor protein blocks catalysis by interaction with the catalytic subunit-Mg X ATP complex. The Ki for this interaction at saturating Mg X ATP and zero peptide substrate is 0.49 nM. Multiple inhibition analysis in the presence of 5'-adenylimidodiphosphate (AMP X PNP) indicates that the inhibitor protein does not interact with a catalytic subunit-AMP X PNP complex. The requirement for ATP for the inhibitor protein-catalytic subunit interaction has also been demonstrated by direct binding measurements and by the observation that the efficiency of the inhibitor protein is increased by preincubation of the inhibitor protein, catalytic subunit, and ATP in the absence of peptide substrate. By either measurement, the catalytic subunit in the presence of the inhibitor protein, was shown to exhibit an apparent Kd of 20 approximately 60 nM for ATP; this value is two orders of magnitude higher than the affinity for ATP by the catalytic subunit alone. This high apparent affinity of the catalytic subunit for ATP (in the presence of the inhibitor) does not require that there be a specific binding site on the inhibitor protein for some moiety of the ATP but may simply be a reflection of the formation of a catalytic subunit-Mg X ATP X inhibitor protein complex with resultant displacement of the equilibrium of ATP binding to the protein kinase.  相似文献   

2.
Control of protein phosphatase 2A by simian virus 40 small-t antigen.   总被引:48,自引:14,他引:34       下载免费PDF全文
Soluble, monomeric simian virus 40 (SV40) small-t antigen (small-t) was purified from bacteria and assayed for its ability to form complexes with protein phosphatase 2A (PP2A) and to modify its catalytic activity. Different forms of purified PP2A, composed of combinations of regulatory subunits (A and B) with a common catalytic subunit (C), were used. The forms used included free A and C subunits and AC and ABC complexes. Small-t associated with both the free A subunit and the AC form of PP2A, resulting in a shift in mobility during nondenaturing polyacrylamide gel electrophoresis. Small-t did not interact with the free C subunit or the ABC form. These data demonstrate that the primary interaction is between small-t and the A subunit and that the B subunit of PP2A blocks interaction of small-t with the AC form. The effect of small-t on phosphatase activity was determined by using several exogenous substrates, including myosin light chains phosphorylated by myosin light-chain kinase, myelin basic protein phosphorylated by microtubule-associated protein 2 kinase/ERK1, and histone H1 phosphorylated by protein kinase C. With the exception of histone H1, small-t inhibited the dephosphorylation of these substrates by the AC complex. With histone H1, a small stimulation of dephosphorylation by AC was observed. Small-t had no effect on the activities of free C or the ABC complex. A maximum of 50 to 75% inhibition was obtained, with half-maximal inhibition occurring at 10 to 20 nM small-t. The specific activity of the small-t/AC complex was similar to that of the ABC form of PP2A with myosin light chains or histone H1 as the substrate. These results suggested that small-t and the B subunit have similar qualitative and quantitative effects on PP2A enzyme activity. These data show that SV40 small-antigen binds to purified PP2A in vitro, through interaction with the A subunit, and that this interaction inhibits enzyme activity.  相似文献   

3.
Magnetic resonance and kinetic studies of the catalytic subunit of a Type II cAMP-dependent protein kinase from bovine heart have established the active complex to be an enzyme-ATP-metal bridge. The metal ion is β,γ coordinated with Δ chirality at the β-phosphorous atom. The binding of a second metal ion at the active site which bridges the enzyme to the three phosphoryl groups of ATP, partially inhibits the reaction. Binding of the metal-ATP substrate to the enzyme occurs in a diffusion-controlled reaction followed by a 40 ° change in the glycosidic torsional angle. This conformational change results from strong interaction of the nucleotide base with the enzyme. NMR studies of four ATP-utilizing enzymes show a correlation between such conformational changes and high nucleotide base specificity. Heptapeptide substrates and substrate analogs bind to the active site of the catalytic subunit at a rate significantly lower than collision frequency indicating conformational selection by the enzyme or a subsequent slow conformational change. NMR studies of the conformation of the enzyme-bound peptide substrates have ruled out α-helical and β-pleated sheet structures. The results of kinetic studies of peptide substrates in which the amino acid sequence was systematically varied were used to rule out the obligatory requirement for all possible β-turn conformations within the heptapeptide although an enzymatic preference for a β2–5 or β3–6 turn could not be excluded. Hence if protein kinase has an absolute requirement for a specific secondary structure, then this structure must be a coil. In the enzyme-substrate complex the distance along the reaction coordinate between the γ-P of ATP and the serine oxygen of the peptide substrate (5.3 ± 0.7 Å) allows room for a metaphosphate intermediate. This finding together with kinetic observations as well as the location of the inhibitory metal suggest a dissociative mechanism for protein kinase, although a mechanism with some associative character remains possible. Regulation of protein kinase is accomplished by competition between the regulatory subunit and peptide or protein substrates at the active site of the catalytic subunit. Thus, the regulatory subunit is found by NMR to block the binding of the peptide substrate to the active site of protein kinase but allows the binding of the nucleotide substrate and divalent cations. The dissociation constant of the regulatory subunit from the active site (10?10m) is increased ~10-fold by phosphorylation and ~104-fold by the binding of cAMP, to a value (10?5m) which exceeds the intracellular concentration of the R2C2 holoenzyme complex (10?6m). The resulting dissociation of the holoenzyme releases the catalytic subunit, permitting the active site binding of peptide or protein substrates.  相似文献   

4.
The catalytic subunit of cAMP-dependent protein kinase from pig brain was shown to catalyse an isotope exchange reaction ATP in equilibrium with ADP. The kinetic parameters of the exchange were determined. The enzyme can also use GTP as the donor substrate; phosphotransferase and "GTPase" reactions were investigated. Based on the kinetic data obtained in this and in the previous paper the free energy profiles of protein kinase catalysed reactions are discussed.  相似文献   

5.
Optimal assay conditions for analyses of the catalytic subunit activity of the cyclic AMP-dependent protein kinase using a well-defined, commercially available synthetic peptide as the phosphate acceptor are defined. Activity of purified catalytic subunit toward the synthetic peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (PK-1; Kemptide) was 1.5- to 45-fold greater than activity toward other commonly used substrates such as histone fractions, casein, and protamine. The effects of buffer, pH, Mg2+, and protein kinase concentration on activity toward PK-1 were investigated. The optimal assay conditions determined were as follows: 20 mM Hepes or phosphate buffer, pH 7.5, 100 microM PK-1, 100 microM [gamma-32P]ATP, 3 mM MgCl2, 12 mM KCl, and 20-200 ng of catalytic subunit assayed at 30 degrees C. Since PK-1 is the only commercially available, well-defined substrate for this enzyme, adaption of the proposed standard assay conditions for the analyses of purified catalytic subunit activity will permit direct comparison of kinetic parameters and purity of enzyme preparations from multiple preparations.  相似文献   

6.
The strength of the interaction between the catalytic and regulatory subunits in protein kinase A differs among species. The linker region from regulatory subunits is non-conserved. To evaluate the participation of this region in the interaction with the catalytic subunit, we have assayed its effect on the enzymatic properties of the catalytic subunit. Protein kinase A from three fungi, Mucor rouxii, Mucor circinelloides and Saccharomyces cerevisiae have been chosen as models. The R-C interaction is explored by using synthetic peptides of 8, 18 and 47 amino acids, corresponding to the R subunit autophosphorylation site plus a variable region toward the N terminus (0, 10, or 39 residues). The Km of the catalytic subunits decreased with the length of the peptide, while the Vmax increased. Viscosity studies identified product release as the rate limiting step for phosphorylation of the longer peptides. Pseudosubstrate derivatives of the 18 residue peptides did not display a competitive inhibition behavior toward either kemptide or a bona fide protein substrate since, at low relative pseudosubstrate/substrate concentration, stimulation of kemptide or protein substrate phosphorylation was observed. The behavior was mimicked by intact R. We conclude that in addition to its negative regulatory role, the R subunit stimulates C activity via distal interactions.  相似文献   

7.
8.
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.  相似文献   

9.
J A Adams  S S Taylor 《Biochemistry》1992,31(36):8516-8522
Viscosogenic agents were used to test the diffusion limits of the reaction catalyzed by the catalytic subunit of the cAMP-dependent protein kinase. The effects of glycerol and sucrose on the maximum rate (kcat) and the apparent second-order rate constants (kcat/Kpeptide) for the phosphorylation of four peptidic substrates were measured at their pH optima. The agents were found to have moderate to no effect on kcat/Kpeptide for good and poor substrates, respectively. Conversely, kcat was highly sensitive to solvent viscosity for three of the four peptides at high concentrations of ATP. Taken together, these data indicate that enzymatic phosphorylation by the catalytic subunit proceeds with rapid or near rapid equilibrium binding of substrates and that all steps following the central substrate complex (i.e., chemical and conformational events) are fast relative to the rate-determining dissociation of product, ADP, when ATP levels are high. Under saturating concentrations of peptide I, LRRASLG, an unproductive form of the enzyme is populated. The observed phosphorylation rate from this complex is involved in rate limitation owing to a slow step separating unproductive and productive enzyme forms. The data are used to establish a kinetic mechanism for the catalytic subunit that predicts initial reaction velocities under varying concentrations of ATP and substrate.  相似文献   

10.
The interaction of calcium/calmodulin-dependent protein kinase II (CaMKII) with the NR2B subunit of N-methyl-D-aspartate-type glutamate receptor is thought to be one of the important events leading to synaptic plasticity. CaMKII binds NR2B by its catalytic site and by the autophosphorylation site binding pocket (APBP), a non-catalytic site. Mutagenesis of Glu-236, a residue in the APBP of CaMKII that is likely to be interacting with NR2B, influences phosphorylation of NR2B. The phosphorylation of syntide-2, a classical catalytic site substrate of CaMKII, is influenced to a much lesser extent by this mutation. Taken together these results indicate that interaction of NR2B at the non-catalytic site of CaMKII influences catalysis. Our data suggest that kinetic models of peptide substrate phosphorylation by CaMKII should incorporate the non-catalytic mode of binding of peptides that is dependent on the sequence of the peptide.  相似文献   

11.
J Toner-Webb  S S Taylor 《Biochemistry》1987,26(23):7371-7378
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A highly active soluble peroxidase (donor: H2O2 oxidoreductase EC 1.11.1.7) has been purified from the preputial gland of the rat by hydroxylapatite chromatography, ammonium sulfate fractionation, Sephadex gel filtration and affinity chromatography on con A-Sepharose. The enzyme shows apparent homogeneity when analysed by acid and alkaline-PAGE. Its molecular, spectral, kinetic and catalytic properties were compared with those of bovine lactoperoxidase (LPO). Preputial gland peroxidase (PPO) is a glycoprotein of molecular weight of 70-73 kDa slightly lower (78 kDa) than that of LPO. Using isoelectric focussing, PPO was resolved into eight different closely spaced protein species spanning a pI range of 5.4 to 6.4, while LPO focuses into several closely spaced protein bands in the pI range 8.5-9.3. PPO is similar to LPO in its spectral (Soret) and some kinetic properties, but it differs significantly from LPO in substrate (H2O2) tolerance and substrate inactivation. PPO also differs from LPO in showing differential inactivation by SDS. Both enzymes are glycoproteins and although concanavalin A (con A) showed a variable interaction with both enzymes, wheat germ agglutinin interacted specifically with LPO only. We suggest that PPO, the secretory peroxidase of the preputial gland, differs significantly from LPO in its molecular and catalytic properties.  相似文献   

13.
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes.  相似文献   

14.
15.
Kinetic constants for peptide phosphorylation by the catalytic subunit of the dimorphic fungus Mucor rouxii protein kinase A were determined using 13 peptides derived from the peptide containing the basic consensus sequence RRASVA, plus kemptide, S6 peptide, and protamine. As a whole, although with a greater Km, the order of preference of the peptides by the M. rouxii catalytic subunit was similar to the one displayed by mammalian protein kinase A. Particularly significant is the replacement of serine by threonine in the basic peptide RRATVA, which impaired its role as a substrate of M. rouxii catalytic subunit. Mucor rouxii protein kinase A is a good model in which to study the mechanism of activation since cAMP alone is not enough to promote activation and dissociation. Four peptides were selected for the study of holoenzyme activation under conditions in which the enzymatic activity was not proportional to the holoenzyme concentration: RRASVA, RRRRASVA, KRRRLSSRA (S6 peptide), and LRRASLG (kemptide); protamine was used as reference. Differential activation degree was observed depending on the peptide used and on cAMP concentration. Ratios of activity between different substrates displayed by the holoenzyme under the above conditions did not reflect the one expected for the free catalytic subunit. The degree of inhibition of the holoenzyme activity by an active peptide derived from the thermostable protein kinase inhibitor was dependent on the substrate used and on the holoenzyme concentration, while it was found to be independent of these two parameters for free catalytic subunit. Polycation modulation of holoenzyme activation by cAMP was also dependent on the polycation itself and on the peptide used as substrate. The observed kinetic differences between holoenzyme and free catalytic subunit were decreased or almost abolished when working at low enzyme or at high cAMP concentrations. Two hypotheses compatible with the results are discussed: substrate participation in the dissociation process and/or holoenzyme activation without dissociation.  相似文献   

16.
It has been proposed that the active centre of cyclic AMP-dependent protein kinase contains an arginine-recognition site, which is considered to be essential for the function of the catalytic subunit of the kinase [Matsuo, Huang & Huang (1978) Biochem. J.173, 441-447]. The catalytic subunit can be inactivated by 3-(3-dimethylaminopropyl)-1-ethylcarbodi-imide and glycine ethyl ester at pH6.5. The enzyme can be protected from inactivation by preincubation with histone, a protein substrate of the enzyme. On the other hand, ATP, which also serves as a protein kinase substrate, does not afford protection. Polyarginine, a competitive inhibitor of protein kinase, which is known from kinetic studies to interact specifically with the arginine-recognition site, partially protects the catalytic subunit from inactivation by 3-(3-dimethylaminopropyl)-1-ethylcarbodi-imide. These results lead to the conclusion that the site of modification by carbodi-imide/glycine ethyl ester is most likely located at the arginine-recognition site of the active centre. A value of 1.7+/-0.2 (mean+/-s.d.) mol of carboxy groups per mol of catalytic subunit has been obtained for the number of essential carboxy groups for the function of protein kinase; a complete chemical modification of these essential carboxy groups results in total loss of catalytic activity. Finally, we have identified the essential carboxy group in the catalytic subunit of cyclic AMP-dependent protein kinase as being derived from glutamate residues. This is achieved by a three-step procedure involving an extensive proteolytic digestion of the [1-(14)C]glycine ethyl ester-modified enzyme and two successive high-voltage electrophoreses of the hydrolysate. It is concluded that 1.7mol of glutamyl carboxy groups per mol of catalytic subunit may be considered a component of the arginine-recognition site in the active centre of cyclic AMP-dependent protein kinase.  相似文献   

17.
The reactions of several mutants at position 244 and 261 of bacterial glycine oxidase (GO) were studied by stopped-flow and steady-state kinetic methods. Substituting H244 with phenylalanine, glutamate, and glutamine and M261 with histidine and tyrosine did not affect the expression of GO and the physicochemical properties of bound FAD. All the H244 and M261 mutants of GO we prepared retained activity in both steady-state and stopped-flow kinetic studies, indicating they do not serve as key elements in glycine and sarcosine oxidation. We demonstrated that the substitution of H244 significantly affected the rate of flavin reduction with glycine even if this change did not modify the turnover number, which is frequently increased compared to wild-type GO. However, substitution of M261 affected the interaction with substrates/inhibitors and the rate of flavin reduction with sarcosine and resulted in a decrease in turnover number and efficiency with all the substrates tested. The considerable decrease in the rate of flavin reduction changed the conditions such that it was partially rate-limiting in the catalytic cycle compared to the wild-type GO. Our studies show some similarities, but also major differences, in the catalytic mechanism of GO and other flavooxidases also active on glycine and sarcosine and give insight into the mode of modulation of catalysis and substrate specificities.  相似文献   

18.
Surface plasmon resonance has been used to study the interaction between the subunits composing protein kinase CK2 (two catalytic, -subunits, and two regulatory, -subunits), as well as the interaction of each subunit with two types of protein substrates, casein, the phosphorylation of which is activated by the regulatory subunit, and calmodulin, which belongs to the kind of substrates on which the catalytic subunit is down regulated by the regulatory subunit. The interaction of casein with the catalytic subunit differs from the interaction with the holoenzyme. Similarly to the interaction with the regulatory subunit, the catalytic subunit interacts with the protein substrate forming a very stable, irreversible complex. The reconstituted holoenzyme, however, binds casein reversibly, displaying a binding mode similar to that displayed by the regulatory subunit. The interaction of calmodulin with the catalytic subunit gives place, like in the case of casein, to an irreversible complex. The interactions with the regulatory subunit, and with the holoenzyme were practically negligible, and the interaction with the regulatory subunit disappeared upon increasing the temperature value to close to 30°C. The presence of polylysine induced a high increase in the extent of calmodulin binding to the holoenzyme. The results obtained suggest that CK2 subunit and protein substrates share a common, or at least an overlapping site of interaction on the catalytic subunit. The interaction between both subunits would prevent substrates from binding irreversibly to subunit, and, at the same time, it would generate a new and milder site of interaction between the whole holoenzyme and the protein substrate. The main difference between casein and calmodulin would consist in the lower affinity display by the last for the new site generated upon the binding of the regulatory subunit, in the absence of polycations like polylysine.  相似文献   

19.
The ubiquitous eukaryotic protein kinase CKII (casein kinase II) has been found to interact with a number of cellular proteins, either through the catalytic subunit or the regulatory subunit. Using the yeast two-hybrid screening method, we found that the catalytic subunit of Drosophila melanogaster CKII (DmCKII) interacts with Drosophila ribosomal protein L22 (rpL22). This interaction was also observed in vitro with a glutathione-S-transferase (GST)-rpL22 fusion protein. The predicted full-length Drosophila rpL22 protein has an N-terminal extension rich in alanine, lysine, and proline that appears to be unique to Drosophila. Deletion mapping revealed that the conserved core of rpL22 is responsible for the interaction with CKII. Moreover, purified DmCKII can phosphorylate a GST-L22 fusion protein at the C-terminal end, suggesting that this protein may be a substrate of CKII in Drosophila.  相似文献   

20.
Le AV  Tavalin SJ  Dodge-Kafka KL 《Biochemistry》2011,50(23):5279-5291
The ubiquitously expressed and highly promiscuous protein phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit copurified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC(50) of 811 ± 0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and surface plasmon resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggesting additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150-250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity toward specific targets in the AKAP79 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号