首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
Molecular biology and application of plant peroxidase genes   总被引:9,自引:0,他引:9  
Peroxidases are a family of isozymes found in all plants; they are heme-containing monomeric glycoproteins that utilize either H(2)O(2) or O(2) to oxidize a wide variety of molecules. These important enzymes are used in enzyme immunoassays, diagnostic assays and industrial enzymatic reactions. Peroxidase genes and their promoters can be used for molecular breeding of useful plants. Transgenic techniques have also been used to investigate the physiological and molecular functions of peroxidase genes in plants. Here, we review transgenic studies of peroxidase genes, including the functional analyses of the enzymes and their promoters. Regarding application of peroxidase genes, it has been reported that overexpression of the tomato TPX2 gene or the sweet potato swpa1 gene conferred increased salt-tolerance or oxidative-stress tolerance, respectively. The growth stimulation effect in transgenic tobacco and hybrid aspen upon overexpression of horseradish peroxidase gene is also discussed.  相似文献   

2.
Horseradish peroxidase: a modern view of a classic enzyme   总被引:18,自引:0,他引:18  
Veitch NC 《Phytochemistry》2004,65(3):249-259
Horseradish peroxidase is an important heme-containing enzyme that has been studied for more than a century. In recent years new information has become available on the three-dimensional structure of the enzyme and its catalytic intermediates, mechanisms of catalysis and the function of specific amino acid residues. Site-directed mutagenesis and directed evolution techniques are now used routinely to investigate the structure and function of horseradish peroxidase and offer the opportunity to develop engineered enzymes for practical applications in natural product and fine chemicals synthesis, medical diagnostics and bioremediation. A combination of horseradish peroxidase and indole-3-acetic acid or its derivatives is currently being evaluated as an agent for use in targeted cancer therapies. Physiological roles traditionally associated with the enzyme that include indole-3-acetic acid metabolism, cross-linking of biological polymers and lignification are becoming better understood at the molecular level, but the involvement of specific horseradish peroxidase isoenzymes in these processes is not yet clearly defined. Progress in this area should result from the identification of the entire peroxidase gene family of Arabidopsis thaliana, which has now been completed.  相似文献   

3.
A major peroxidase has been found in the tomato pericarp (Lycopersicon esculentum var. Tropic) of the ripe and green fruit. A purification scheme yielding this enzyme approximately 85% pure has been developed. The tomato enzyme resembles horseradish peroxidase (HRP) in a standard peroxidase assay and in its ability to be reduced to ferroperoxidase, to be converted to oxyferroperoxidase (compound III), and to form peroxidase complexes with hydrogen peroxide (compounds I and II). In contrast to the HRP, the tomato peroxidase fails to catalyze the aerobic oxidation of indole-3-acetic acid in the presence of 2,4-dichlorophenol and manganese. The tomato peroxidase can be resolved into two nonidentical subunits in the presence of dithiothreitol while HRP remains as a single polypeptide chain after such treatment. Dithiothreitol is oxidized in the presence of tomato or horseradish peroxidase with the enzymes accumulating in their oxyferroperoxidase forms during the oxidation reaction. Whereas HRP returns to its free ferric form at the end of the reaction, the tomato enzyme is converted into a form that absorbs at 442 nanometers.  相似文献   

4.
It has been established that the horseradish peroxidase/O2/isobutyraldehyde (IBAL) system leads to triplet acetone and formic acid formation followed by phosphorescence of the triplet acetone (see, for example, Bechara, E.J.H., Faria Oliveira, O.M.M., Durán, N., Casadei de Baptista, R., and Cilento, G. (1979) Photochem. Photobiol. 30, 101-110). In this paper many of the mechanistic details are established. The reaction is initiated by the autoxidation of IBAL to form the peracid (CH3)2CHC = O(OOH). The peracid converts horseradish peroxidase into compound I which in turn is converted into compound II by abstracting the alcoholic hydrogen atom from the enol form of IBAL. This creates a free radical with two resonance forms. (Formula: see text) Addition of molecular oxygen to the latter resonance form creates a peroxy radical which abstracts a hydrogen atom near the active site of the enzyme. The newly formed alpha-peroxide in turn forms a dioxetane-type of intermediate which rapidly decomposes into triplet acetone and formic acid. Compound II reacts with the enol by the same pathway as compound I. Thus native horseradish peroxidase is regenerated. The hydrogen atom abstraction near the enzyme active site may occur directly from ethanol, present to solubilize IBAL or from a group on the enzyme, in which case ethanol participates in a repair mechanism. Phosphate buffer is necessary because it catalyzes the keto-enol conversion of IBAL. Thus horseradish peroxidase participates in a normal peroxidatic cycle. The only chain reaction is the uncatalyzed autoxidation of IBAL, most of which occurs prior to the mixing of IBAL with the oxygenated horseradish peroxidase solution.  相似文献   

5.
3,4-Dihydro-6-hydroxy-N,N,N-2,5,7,8-heptamethyl-2H-1-benzopyran-2-ethanaminium-4-methylbenzene sulfonate (MDL 73,404) is a cardioselective water-soluble quaternary ammonium analogue of Vitamin E which is synthesized to augment the antioxidant defence in situations of free radical injury such as myocardial infarction/reperfusion. Its oxidation by any peroxidative enzyme has not been studied kinetically. This paper describes its enzymatic oxidation by horseradish peroxidase (HRP). The activity was followed spectrophotometrically at 255nm, and the experimental results were simulated using the program "KINETIC 3.1" for Windows 3.x. The MDL 73,404 was oxidized by horseradish peroxidase in the presence of H2O2 to its corresponding MDL 73,404 quinone. During this oxidation, the horseradish peroxidase showed an unexpectedly slow kinetic response with time, which contrast with the linear product accumulation curve measured with 2,2'-azino-bis-(3-estilbenzotiazol-6-sulfonic acid) (ABTS). This response was dependent on the respective concentrations of enzyme, MDL 73,404 and H2O2. However, when the enzyme was incubated with H2O2, the slow kinetic response disappeared and a lag period was observed. Furthermore, when p-coumaric acid (PCA) was added, the activity increased and the slow kinetic response became a straight line. In order to explain this anomalous behaviour, a kinetic model has been proposed and its differential equations simulated. From the correlation between experimental and simulated results it is concluded that MDL 73,404 can act as a slow response substrate for peroxidase, probably due to the presence of a quaternary ammonium side chain that confers on it a slow capacity to convert compound III into ferriperoxidase.  相似文献   

6.
The effect of vanadium (V) on the activity of horseradish peroxidase, catalase, glutathione peroxidase, and superoxide dismutase has been studied. A competitive inhibition pattern was evident for vanadate ions on the activity of horseradish peroxidase (Ki = 41.2 microM). No significant inhibitory effects were found when V(V) was tested with catalase and when either V(IV) or V(V) were assayed with glutathione peroxidase. For the latter, the effect of V on the different components of the reaction system was investigated. V(V) did not significantly affect SOD activity when assayed with the sulfite method, which is devoid of interferences with V(V); however, there was an apparent inhibitory dose-response pattern for either V(IV) or V(V) using the pyrogallol assay, owing to an interference of pyrogallol with the metal. Besides, no significant binding of V(IV) or V(V) to the enzyme could be demonstrated. The lack of a direct inhibitory effect of V on the activity of the main antioxidant enzymes suggests that many biological and toxicological effects of V may be mediated more by oxidative reactions of the metal or of its complexes with physiologically relevant biomolecules than by a direct modulation of enzymatic activities.  相似文献   

7.
Abstract: The molecular structure of lignins (occurrence of condensed and non-condensed monomeric units and associations with phenolic acids by ether and ester linkages) have been reviewed in this paper. Critical aspects of chemical determination of lignin content and monomeric composition have been discussed in the case of nitrobenzene oxidation and thioacidolysis. As an example of assessment of lignin biodegradation by peroxidases, lignin peroxidase and horseradish peroxidase have been compared, indicating that horseradish peroxidase is a ligninolytic enzyme, confirming the influence of the physical state of lignins on their biodegradability and the general difficulty to characterize biomacromolecules.  相似文献   

8.
The topography of the active sites of native horseradish peroxidase and manganic horseradish peroxidase has been studied with the aid of a spin-labeled analog of benzhydroxamic acid (N-(1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxy)-p-aminobenzhydroxamic acid). The optical spectra of complexes between the spin-labeled analog of benzhydroxamic acid and Fe3+ or Mn3+ horseradish peroxidase resembled the spectra of the corresponding enzyme complexes with benzhydroxamic acid. Electron spin resonance (ESR) measurement indicated that at pH 7 the nitroxide moiety of the spin-labeled analog of benzhydroxamic acid became strongly immobilized when this label bound to either ferric or manganic horseradish peroxidase. The titration of horseradish peroxidase with the spin-labeled analog of benzhydroxamic acid revealed a single binding site with association constant Ka approximately 4.7 . 10(5) M-1. Since the interaction of ligands (e.g. F-, CN-) and H2O2 with horseradish peroxidase was found to displace the spin label, it was concluded that the spin label did not indeed bind to the active site of horseradish peroxidase. At alkaline pH values, the high spin iron of native horseradish peroxidase is converted to the low spin form and the binding of the spin-labeled analog of benzhydroxamic acid to horseradish peroxidase is completely inhibited. From the changes in the concentration of both bound and free spin label with pH, the pK value of the acid-alkali transition of horseradish peroxidase was found to be 10.5. The 2Tm value of the bound spin label varied inversely with temperature, reaching a value of 68.25 G at 0 degree C and 46.5 G at 52 degrees C. The dipolar interaction between the iron atom and the free radical accounted for a 12% decrease in the ESR signal intensity of the spin label bound to horseradish peroxidase. From this finding, the minimum distance between the iron atom and nitroxide group and hence a lower limit to the depth of the heme pocket of horseradish peroxidase was estimated to be 22 A.  相似文献   

9.
Purification and characterization of pea cytosolic ascorbate peroxidase   总被引:2,自引:0,他引:2  
The cytosolic isoform of ascorbate peroxidase was purified to homogeneity from 14-day-old pea (Pisum sativum L.) shoots. The enzyme is a homodimer with molecular weight of 57,500, composed of two subunits with molecular weight of 29,500. Spectral analysis and inhibitor studies were consistent with the presence of a heme moiety. When compared with ascorbate peroxidase activity derived from ruptured intact chloroplasts, the purified enzyme was found to have a higher stability, a broader pH optimum for activity, and the capacity to utilize alternate electron donors. Unlike classical plant peroxidases, the cytosolic ascorbate peroxidase had a very high preference for ascorbate as an electron donor and was specifically inhibited by p-chloromercurisulfonic acid and hydroxyurea. Antibodies raised against the cytosolic ascorbate peroxidase from pea did not cross-react with either protein extracts obtained from intact pea chloroplasts or horseradish peroxidase. The amino acid sequence of the N-terminal region of the purified enzyme was determined. Little homology was observed among pea cytosolic ascorbate peroxidase, the tea chloroplastic ascorbate peroxidase, and horseradish peroxidase; homology was, however, found with chloroplastic ascorbate peroxidase isolated from spinach leaves.  相似文献   

10.
Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, we characterize the H2O2-oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Coprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum.  相似文献   

11.
Porphobilinogen oxygenase oxidizes porphobilinogen to 2-hydroxy-5-oxo-porphobilinogen. This enzyme isolated from wheat germ has been purified to homogeneity, as judged by polyacrylamide gel electrophoresis under both nondenaturing and denaturing conditions. The molecular weight of the enzyme formed from two identical (or very similar) polypeptide chains is 70,000. It has a pI of 9.0 indicating its cationic nature. The pure enzyme contains 1 mol of high-spin heme and 2 mol of non-heme iron. It requires both of these as well as molecular O2 and a reducing agent for catalytic activity. Although the enzyme has many characteristics of a peroxidase, hydrogen peroxide cannot substitute for oxygen and dithionite for catalysis. The catalytic reaction is not affected by catalase, superoxide dismutase, or by hydroxyl radical scavengers. A comparison between porphobilinogen oxygenase and a commercial preparation of horseradish peroxidase was made. The latter also catalyzes aerobic porphobilinogen oxidation, with dithionite as electron donor. Here the oxidation of porphobilinogen is inhibited by superoxide dismutase and was not affected by catalase.  相似文献   

12.
Previous study has shown that a peroxidase is present in the mature eggs of Aedes aegypti mosquitoes, and the enzyme is involved in the formation of a rigid and insoluble chorion by catalyzing chorion protein crosslinking through dityrosine formation. In this study, chorion peroxidase was solubilized from egg chorion by 1% SDS and 2 M urea and purified by various chromatographic techniques. The enzyme has a relative molecular mass of 63,000 as estimated by SDS-PAGE. Spectral analysis of the enzyme revealed the presence of the Soret band with a lambda(max) at 415 nm, indicating that chorion peroxidase is a hemoprotein. Treatment of the native enzyme with H2O2 in excess in the absence of reducing agents shifted the Soret band from 415 to 422 nm, and reduction of the native enzyme with sodium hydrosulfite under anaerobic conditions changed the Soret band from 415 to 446 nm. These results show that the chorion peroxidase behaves similarly to other peroxidases under oxidative and reductive conditions, respectively. Compared to other peroxidases, the chorion peroxidase, however, is extremely resistant to denaturing agents, such as SDS and organic solvents. For example, chorion peroxidase remained active for several weeks in 1% SDS, while horseradish peroxidase irreversibly lost all its activity in 2 h under the same conditions. Comparative analysis between mosquito chorion peroxidase and horseradish peroxidase showed that the specific activity of chorion peroxidase to tyrosine was at least 100 times greater than that of horseradish peroxidase to tyrosine. Chorion peroxidase is also capable of catalyzing polypeptide and chorion protein crosslinking through dityrosine formation during in vitro assays. Our data suggest that the characteristics of the chorion peroxidase in mosquitoes closely reflect its functions in chorion formation and hardening.  相似文献   

13.
A methylene blue-mediated enzyme biosensor has been developed for the detection of inhibitors including mercury(II), mercury(I), methylmercury, and mercury-glutathione complex. The inhibition to horseradish peroxidase was apparently reversible and noncompetitive in the presence of HgCl2 in less than 8 s and irreversibly inactivated when incubated with different concentrations of HgCl2 for 1-8 min. The binding site of horseradish peroxidase with HgCl2 probably was a cysteine residue SH. Mercury compounds can be assayed amperometrically with the detection limits 0.1 ng ml(-1) Hg for HgCl2 and methylmercury, 0.2 ng ml(-1) Hg for Hg2(NO3)2 and 1.7 ng ml(-1) Hg for mercury glutathione complex. Inactivation of the immobilized horseradish peroxidase was displayed in the AFM images of the enzyme membranes.  相似文献   

14.
Sirois JC  Miller RW 《Plant physiology》1972,49(6):1012-1018
The naturally occurring coumarin, scopoletin, has been found to modify horseradish peroxidase rapidly to give a stable, spectroscopically distinguishable form of the enzyme. Peroxidase treated with scopoletin is less active in reactions with molecular oxygen and indole-3-acetic acid. Kinetic data for the degradation of this growth regulator were obtained with a continuously monitored fluorometric procedure. Lineweaver-Burk plots of the reciprocal rate of degradation against the reciprocal substrate concentration were markedly curved in the presence of the inhibitor, scopoletin. Excess indole-3-acetate restored the scopoletin-treated enzyme to a reactive state. In the presence of molecular oxygen, concentrations of indole-3-acetic acid which were at least 10-fold greater than the inhibitor concentration led to the rapid oxidation of the coumarin and converted peroxidase to compound III as expected from previous studies. This form of the enzyme is the catalytically active species in the oxidative degradation of the growth regulator. The kinetically preferential reaction of scopoletin or related coumarins with peroxidase and the suppression of indole-3-acetic acid degradation may provide a possible control mechanism over the oxidative degradation of indole-3-acetate by this plant enzyme.  相似文献   

15.
Horseradish peroxidase was modified by phthalic anhydride and glucosamine hydrochloride. The thermostabilities and removal efficiencies of phenolics by native and modified HRP were assayed. The chemical modification of horseradish peroxidase increased their thermostability (about 10- and 9-fold, respectively) and in turn also increased the removal efficiency of phenolics. The quantitative relationships between removal efficiency of phenol and reaction conditions were also investigated using modified enzyme. The optimum pH for phenol removal is 9.0 for both native and modified forms of the enzyme. Both modified enzyme could suffer from higher temperature than native enzyme in phenol removal reaction. The optimum molar ratio of hydrogen peroxide to phenol was 2.0. The phthalic anhydride modified enzyme required lower dose of enzyme than native horseradish peroxidase to obtain the same removal efficiency. Both modified horseradish peroxidase show greater affinity and specificity of phenol.  相似文献   

16.
Controlled layer-by-layer immobilization of horseradish peroxidase.   总被引:2,自引:0,他引:2  
Horseradish peroxidase (HRP) was biotinylated with biotinamidocaproate N-hydroxysuccinimide ester (BcapNHS) in a controlled manner to obtain biotinylated horseradish peroxidase (Bcap-HRP) with two biotin moieties per enzyme molecule. Avidin-mediated immobilization of HRP was achieved by first coupling avidin on carboxy-derivatized polystyrene beads using a carbodiimide, followed by the attachment of the disubstituted biotinylated horseradish peroxidase from one of the two biotin moieties through the avidin-biotin interaction (controlled immobilization). Another layer of avidin can be attached to the second biotin on Bcap-HRP, which can serve as a protein linker with additional Bcap-HRP, leading to a layer-by-layer protein assembly of the enzyme. Horseradish peroxidase was also immobilized directly on carboxy-derivatized polystyrene beads by carbodiimide chemistry (conventional method). The reaction kinetics of the native horseradish peroxidase, immobilized horseradish peroxidase (conventional method), controlled immobilized biotinylated horseradish peroxidase on avidin-coated beads, and biotinylated horseradish peroxidase crosslinked to avidin-coated polystyrene beads were all compared. It was observed that in solution the biotinylated horseradish peroxidase retained 81% of the unconjugated enzyme's activity. Also, in solution, horseradish peroxidase and Bcap-HRP were inhibited by high concentrations of the substrate hydrogen peroxide. The controlled immobilized horseradish peroxidase could tolerate much higher concentrations of hydrogen peroxide and, thus, it demonstrates reduced substrate inhibition. Because of this, the activity of controlled immobilized horseradish peroxidase was higher than the activity of Bcap-HRP in solution. It is shown that a layer-by-layer assembly of the immobilized enzyme yields HRP of higher activity per unit surface area of the immobilization support compared to conventionally immobilized enzyme.  相似文献   

17.
The results of freezing and dehydration of horseradish peroxidase   总被引:1,自引:0,他引:1  
Ben Darbyshire 《Cryobiology》1975,12(3):276-281
Explanations of the mechanism of freezing injury have included the one that freezing may result in dehydration of enzymes. This hypothesis has been examined by comparing the effects of freezing and dehydration on horseradish peroxidase.It was found that freezing and dehydration reduce the activity of peroxidase when compared with the native enzyme. Polyvinyl pyrrolidone and increased protein concentration protect the enzyme against loss of activity in both treatments, Protein-protein interactions exclude water, and this mechanism is suggested to stabilize peroxidase and protect against desiccation. Polyvinyl pyrrolidone may protect against freezing by reducing dehydration through reduced vapor-pressure difference or may stabilize by a protein-polymer interaction.  相似文献   

18.
Intrinsic tissue peroxidase activity can be more or less successfully destroyed by methanol-H2O2 treatment. It has been found, however, in our laboratory that horseradish peroxidase (HRP) coupled to antibody will bind to some tissue components on a nonspecific basis and remain to take part in the histochemical stain. This contributes considerably to the background. This difficulty can be largely overcome if the tissues are pretreated with a solution of horseradish peroxidase which binds with nonspecific tissue sites. The adsorbed enzyme, along with the intrinsic peroxidase, can then be successfully inactivated by methanol-H2O2 treatment. By this method of blocking, there is considerable reduction in background staining.  相似文献   

19.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

20.
A novel methodology for coupling liquid-liquid extraction with affinity interaction has been developed to selectively and efficiently purify and separate glycoproteins. The basis for the separation is the selective extraction of glycoproteins from an aqueous solution into a reverse micellar organic phase by using concanavalin A (a sugar-binding lectin) as a facilitative carrier. Specifically, horseradish peroxidase (a common glycoprotein) can be bound to concanavalin A in an aqueous phase and then extracted into an AOT-isooctane organic phase with negligible loss in enzyme activity. Virtually no extraction of peroxidase occurs in the absence of concanavalin A. Electron spin resonance studies have shown that the large lectin-glycoprotein complex (96,000 daltons) resides in a nonaqueous environment within the reverse micelle, perhaps at the surfactant, water-pool interface; hence, extraction of the large complex is feasible. The facilitative extraction has been extended to selective transport of peroxidase from a mixture of peroxidase and alkaline phosphatase (a nonglycosylated protein). This results in an efficient separation strategy with a separation factor of 16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号