首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Pancreatic β-cells release insulin via an electrogenic response triggered by an increase in plasma glucose concentrations. The critical plasma glucose concentration has been determined to be ~3 mM, at which time both insulin and GABA are released from pancreatic β-cells. Taurine, a β-sulfonic acid, may be transported into cells to balance osmotic pressure. The taurine transporter (TauT) has been described in pancreatic tissue, but the function of taurine in insulin release has not been established. Uptake of taurine by pancreatic β-cells may alter membrane potential and have an effect on ion currents. If taurine uptake does alter β-cell current, it might have an effect on exocytosis of cytoplasmic vesicle. We wished to test the effect of taurine on regulating release of insulin from the pancreatic β-cell.

Methods

Pancreatic β-cell lines Hit-TI5 (Syrian hamster) and Rin-m (rat insulinoma) were used in these studies. Cells were grown to an 80% confluence on uncoated cover glass in RPMI media containing 10% fetal horse serum. The cells were then adapted to a serum-free, glucose free environment for 24 hours. At that time, the cells were treated with either 1 mM glucose, 1 mM taurine, 1 mM glucose + 1 mM taurine, 3 mM glucose, or 3 mM glucose + 1 mM taurine. The cells were examined by confocal microscopy for cytoplasmic levels of insulin.

Results

In both cell lines, 1 mM glucose had no effect on insulin levels and served as a control. Cells starved of glucose had a significant reduction (p<0.001) in the level of insulin, but this level was significantly higher than all other treatments. As expected, the 3 mM glucose treatment resulted in a statistically lower (p<0.001) insulin level than control cells. Interestingly, 1 mM taurine also resulted in a statistically lower level of insulin (p<0.001) compared to controls when either no glucose or 1 mM glucose was present. Cells treated with 1 mM taurine plus 3 mM glucose showed a level of insulin similar to that of 3 mM glucose alone.

Conclusions

Taurine administration can alter the electrogenic response in β-cell lines, leading to a change in calcium homeostasis and a subsequent decrease in intracellular insulin levels. The consequence of these actions could represent a method of increasing plasma insulin levels leading to a decrease in plasma glucose levels.
  相似文献   

2.

Objective:

It remains uncertain whether leptin and adiponectin levels are correlated in maternal vs. fetal circulations. Little is known about whether leptin and adiponectin affect insulin sensitivity during fetal life.

Design and Methods:

In a prospective singleton pregnancy cohort (n = 248), we investigated leptin and adiponectin concentrations in maternal (at 24‐28 and 32‐35 weeks of gestation) and fetal circulations, and their associations with fetal insulin sensitivity (glucose/insulin ratio, proinsulin level).

Results:

Comparing concentrations in cord vs. maternal blood, leptin levels were 50% lower, but adiponectin levels more than doubled. Adjusting for gestational age at blood sampling, consistent and similar positive correlations (correlation coefficients: 0.31‐0.34, all P < 0.0001) were observed in leptin or adiponectin levels in maternal (at 24‐28 or 32‐25 weeks of gestation) vs. fetal circulations. For each SD increase in maternal plasma concentration at 24‐28 weeks, cord plasma concentration increased by 12.7 (95% confidence interval 6.8‐18.5) ng/ml for leptin, and 2.9 (1.8‐4.0) µg/ml for adiponectin, respectively (adjusted P < 0.0001). Fetal insulin sensitivity was negatively associated with cord blood leptin (each SD increase was associated with a 5.4 (2.1‐8.7) mg/dl/µU/ml reduction in cord plasma glucose/insulin ratio, and a 5.6 (3.9, 7.4) pmol/l increase in proinsulin level, all adjusted P < 0.01) but not adiponectin (P > 0.4) levels). Similar associations were observed in nondiabetic full‐term pregnancies (n = 211).

Conclusions:

The results consistently suggest a maternal impact on fetal leptin and adiponectin levels, which may be an early life pathway in maternal‐fetal transmission of the propensity to obesity and insulin resistance.  相似文献   

3.

Background  

Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway.  相似文献   

4.

Background  

Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively.  相似文献   

5.

Backgrond  

In the mosquito Aedes aegypti the insulin/insulin growth factor I signaling (IIS) cascade is a key regulator of many physiological processes, including reproduction. Two important reproductive events, steroidogenesis in the ovary and yolk synthesis in the fat body, are regulated by the IIS cascade in mosquitoes. The signaling molecule phosphatase and tensin homolog (PTEN) is a key inhibitor of the IIS cascade that helps modulate the activity of the IIS cascade. In Ae. aegypti, six unique splice variants of AaegPTEN were previously identified, but the role of these splice variants, particularly AaegPTEN3 and 6, were unknown.  相似文献   

6.

Objective:

Assessment of antilipolytic insulin action is important in obesity research, but extensive isotopic tracer studies are not always feasible. We evaluated whether an index of antilipolytic insulin action could be derived from readily available insulin and glycerol concentrations obtained during clamps or oral glucose tolerance tests (OGTT).

Design and Methods:

We evaluated data collected from 29 subjects who had undergone a 3‐stage hyperinsulinemic‐euglycemic clamp (4, 8, and 40 mU/m2/min) with infusion of [2H5]glycerol to calculate the glycerol rate of appearance (GLYRA). Exponential decay curves for GLYRA across insulin concentrations were generated for each individual and suppression of lipolysis was calculated as the insulin concentration needed to half‐maximally suppress GLYRA (GLYRA EC50). Areas under the curve for glycerol (GLYAUC) and insulin (INSAUC) were calculated and their products (INSAUC × GLYAUC) were calculated as an index of insulin suppression of lipolysis.

Results:

The clamp index was highly correlated with GLYRA EC50 (r = 0.862, P < 0.001), as was an OGTT‐derived index (r = 0.720, P < 0.01).

Conclusions:

These findings suggest that the products of the insulin and glycerol AUC from either a clamp or an OGTT are good biomarkers of the antilipolytic action of insulin and are comparable with direct measurement by isotopic tracer methods.  相似文献   

7.

Objective:

Hepatic iron overload (HIO) and iron‐induced oxidative stress have recently emerged as an important factor for the development and progression of insulin resistance. The aim of this study was to evaluate the effect of tamibarotene, a selective retinoic acid receptor α/β agonist, on hepatic iron metabolism, based on our previous findings that retinoids suppress hepatic iron accumulation by increasing hepatic iron efflux through the regulation of hemojuvelin and ferroportin expression.

Design and Methods:

We quantitated the non‐heme iron content and iron metabolism‐related gene expression in the liver, and serum lipid and blood glucose levels in KK‐Ay mice after dietary administration of tamibarotene.

Results:

It was demonstrated that tamibarotene significantly reduced blood glucose and hepatic iron, but not serum lipids, and that hemojuvelin expression significantly decreased while ferroportin increased, as observed previously.

Conclusions:

These results suggest that tamibarotene is a promising alternative for the treatment of insulin resistance associated with HIO.  相似文献   

8.

Background

Insulin-degrading enzyme (IDE) is widely recognized as the principal protease responsible for the clearance and inactivation of insulin, but its role in glycemic control in vivo is poorly understood. We present here the first longitudinal characterization, to our knowledge, of glucose regulation in mice with pancellular deletion of the IDE gene (IDE-KO mice).

Methodology

IDE-KO mice and wild-type (WT) littermates were characterized at 2, 4, and 6 months of age in terms of body weight, basal glucose and insulin levels, and insulin and glucose tolerance. Consistent with a functional role for IDE in insulin clearance, fasting serum insulin levels in IDE-KO mice were found to be ∼3-fold higher than those in wild-type (WT) controls at all ages examined. In agreement with previous observations, 6-mo-old IDE-KO mice exhibited a severe diabetic phenotype characterized by increased body weight and pronounced glucose and insulin intolerance. In marked contrast, 2-mo-old IDE-KO mice exhibited multiple signs of improved glycemic control, including lower fasting glucose levels, lower body mass, and modestly enhanced insulin and glucose tolerance relative to WT controls. Biochemically, the emergence of the diabetic phenotype in IDE-KO mice correlated with age-dependent reductions in insulin receptor (IR) levels in muscle, adipose, and liver tissue. Primary adipocytes harvested from 6-mo-old IDE-KO mice also showed functional impairments in insulin-stimulated glucose uptake.

Conclusions

Our results indicate that the diabetic phenotype in IDE-KO mice is not a primary consequence of IDE deficiency, but is instead an emergent compensatory response to chronic hyperinsulinemia resulting from complete deletion of IDE in all tissues throughout life. Significantly, our findings provide new evidence to support the idea that partial and/or transient inhibition of IDE may constitute a valid approach to the treatment of diabetes.  相似文献   

9.
He M  Su H  Gao W  Johansson SM  Liu Q  Wu X  Liao J  Young AA  Bartfai T  Wang MW 《PloS one》2010,5(12):e14205

Background

Glucagon-like peptide-1 (GLP-1) is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R) agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO) mice, an animal model of human obesity and insulin resistance.

Methodology/Principal Findings

DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg) for 12 weeks. Body weight, body mass index (BMI), food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg) reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various extents by Boc5 treatment.

Conclusions/Significance

Boc5 may produce metabolic benefits via multiple synergistic mechanisms and may represent an attractive tool for therapeutic intervention of obesity and diabetes, by means of non-peptidic GLP-1R agonism.  相似文献   

10.

Background

The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues.

Methodology/Principal Findings

Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity.

Conclusions/Significance

We have discovered a new class of IR isoform-selective insulin analogues with 2–4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits.  相似文献   

11.
12.

Background  

The present study aimed at investigating in healthy volunteers the effects of diazepam and clonazepam on beta-cell function, insulin sensitivity and glucose effectiveness based on the frequently sampled intravenous (0.5 gkg-1) glucose tolerance test with minimal-model analysis.  相似文献   

13.

Objective

Recent genome-wide association studies identified novel candidate genes for fasting and 2 h blood glucose and insulin levels in adults. We investigated the role of four of these loci (ADCY5, GIPR, GCKR and VPS13C) in early impairment of glucose and insulin metabolism in children.

Research Design and Methods

We genotyped four variants (rs2877716; rs1260326; rs10423928; rs17271305) in 638 Caucasian children with detailed metabolic testing including an oGTT and assessed associations with measures of glucose and insulin metabolism (including fasting blood glucose, insulin levels and insulin sensitivity/secretion indices) by linear regression analyses adjusted for age, sex, BMI-SDS and pubertal stage.

Results

The major allele (C) of rs2877716 (ADCY5) was nominally associated with decreased fasting plasma insulin (P = 0.008), peak insulin (P = 0.009) and increased QUICKI (P = 0.016) and Matsuda insulin sensitivity index (P = 0.013). rs17271305 (VPS13C) was nominally associated with 2 h blood glucose (P = 0.009), but not with any of the insulin or insulin sensitivity parameters. We found no association of the GIPR and GCKR variants with parameters of glucose and insulin metabolism. None of the variants correlated with anthropometric traits such as height, WHR or BMI-SDS, which excluded potential underlying associations with obesity.

Conclusions

Our data on obese children indicate effects of genetic variation within ADCY5 in early impairment of insulin metabolism and VPS13C in early impairment of blood glucose homeostasis.  相似文献   

14.

Backgrounds

High-density lipoprotein (HDL) has been proposed to enhance β-cell functions. Clinical studies have suggested that apolipoprotein M (apoM), which rides mainly on HDL, is involved in diabetes; however, the underlying mechanism has not yet been elucidated. Recently, apoM was shown to be a carrier for sphingosine 1-phosphate (S1P), a bioactive lipid mediator. In the present study, we investigated the modulation of insulin secretion by apoM through the action of S1P.

Methods and results

We overexpressed apoM in the livers of C57BL6 mice using adenovirus gene transfer and found that the blood glucose levels under ad libitum feeding conditions were lower in the apoM-overexpressing mice. While an insulin tolerance test revealed that insulin sensitivity was not significantly affected, a glucose tolerance test revealed that apoM-overexpressing mice had a better glucose tolerance because of enhanced insulin secretion, a phenomenon that was reversed by treatment with VPC 23019, an antagonist against S1P1 and S1P3 receptor. In vitro experiments with MIN6 cells also revealed that apoM-containing lipoproteins enhanced insulin secretion, which was again inhibited by VPC 23019. ApoM retarded the degradation of S1P, and an increase in Pdx1 expression, the attenuation of endoreticulum stress, and the phosphorylation of Akt, AmpK, and Erk were observed as possible underlying mechanisms for the effect of S1P, maintained at a high concentration by apoM, on the increase in insulin secretion.

Conclusions

ApoM augmented insulin secretion by maintaining the S1P concentration under both in vivo and in vitro conditions.  相似文献   

15.

Objective:

To assess how intrahepatic fat and insulin resistance relate to daily fructose and energy intake during short‐term overfeeding in healthy subjects.

Design and methods:

The analysis of the data collected in several studies in which fasting hepatic glucose production (HGP), hepatic insulin sensitivity index (HISI), and intrahepatocellular lipids (IHCL) had been measured after both 6‐7 days on a weight‐maintenance diet (control, C; n = 55) and 6‐7 days of overfeeding with 1.5 (F1.5, n = 7), 3 (F3, n = 17), or 4 g fructose/kg/day (F4, n = 10), with 3 g glucose/kg/day (G3, n = 11), or with 30% excess energy as saturated fat (fat30%, n = 10).

Results:

F3, F4, G3, and fat30% all significantly increased IHCL, respectively by 113 ± 86, 102 ± 115, 59 ± 92, and 90 ± 74% as compared to C (all P < 0.05). F4 and G3 increased HGP by 16 ± 10 and 8 ± 11% (both P < 0.05), and F3 and F4 significantly decreased HISI by 20 ± 22 and 19 ± 14% (both P < 0.01). In contrast, there was no significant effect of fat30% on HGP or HISI.

Conclusions:

Short‐term overfeeding with fructose or glucose decreases hepatic insulin sensitivity and increases hepatic fat content. This indicates short‐term regulation of hepatic glucose metabolism by simple carbohydrates.  相似文献   

16.
Chronic stress is associated with impaired neuronal functioning, altered insulin signaling, and behavioral dysfunction. Quercetin has shown neuroprotective and antidiabetic effects, besides modulating cognition and insulin signaling. Therefore, in the present study, we explored whether or not quercetin ameliorates stress-mediated cognitive dysfunction and explored the underlying mechanism. Swiss albino male mice were subjected to an array of unpredicted stressors for 21 days, during which 30 mg/kg quercetin treatment was given orally. The effect of chronic unpredicted stress (CUS) and quercetin treatment on cognition were evaluated using novel object recognition (NOR) and Morris water maze (MWM) tests. Hippocampal neuronal integrity was observed by histopathological examination. Blood glucose, serum corticosterone, and insulin levels were measured by commercial kits and insulin resistance was evaluated in terms of HOMA-IR index. Hippocampal insulin signaling was determined by immunofluorescence staining. CUS induced significant cognitive dysfunction (NOR and MWM) and severely damaged hippocampal neurons, especially in the CA3 region. Quercetin treatment alleviated memory dysfunction and rescued neurons from CUS-mediated damage. Fasting blood glucose, serum corticosterone, and serum insulin were significantly elevated in stressed animals, besides, having significantly higher HOMA-IR index, suggesting the development of insulin resistance. Quercetin treatment alleviated insulin resistance and attenuated altered biochemical parameters. CUS markedly down-regulated insulin signaling in CA3 region and quercetin treatment improved neuronal GLUT4 expression, which seemed to be independent of insulin and insulin receptor levels. These results suggest that intact insulin functioning in the hippocampus is essential for cognitive functions and quercetin improves CUS-mediated cognitive dysfunction by modulating hippocampal insulin signaling.  相似文献   

17.
Mor A  Aizman E  George J  Kloog Y 《PloS one》2011,6(6):e21712

Background

Reduced glucose uptake due to insulin resistance is a pivotal mechanism in the pathogenesis of type 2 diabetes. It is also associated with increased inflammation. Ras inhibition downregulates inflammation in various experimental models. The aim of this study was to examine the effect of Ras inhibition on insulin sensitivity and glucose uptake, as well as its influence on type 2 diabetes development.

Methods and Findings

The effect of Ras inhibition on glucose uptake was examined both in vitro and in vivo. Ras was inhibited in cells transfected with a dominant-negative form of Ras or by 5-fluoro-farnesylthiosalicylic acid (F-FTS), a small-molecule Ras inhibitor. The involvement of IκB and NF-κB in Ras-inhibited glucose uptake was investigated by immunoblotting. High fat (HF)-induced diabetic mice were treated with F-FTS to test the effect of Ras inhibition on induction of hyperglycemia. Each of the Ras-inhibitory modes resulted in increased glucose uptake, whether in insulin-resistant C2C12 myotubes in vitro or in HF-induced diabetic mice in vivo. Ras inhibition also caused increased IκB expression accompanied by decreased expression of NF-κB . In fat-induced diabetic mice treated daily with F-FTS, both the incidence of hyperglycemia and the levels of serum insulin were significantly decreased.

Conclusions

Inhibition of Ras apparently induces a state of heightened insulin sensitization both in vitro and in vivo. Ras inhibition should therefore be considered as an approach worth testing for the treatment of type 2 diabetes.  相似文献   

18.
Infusion of carnitine has been observed to increase non-oxidative glucose disposal in several studies, but the effect of oral carnitine on glucose disposal in non-diabetic lean versus overweight/obese humans has not been examined. This study examined the effects of 14 days of l-carnitine l-tartrate oral supplementation (LC) on blood glucose, insulin, NEFA and GLP-1 responses to an oral glucose tolerance test (OGTT). Sixteen male participants were recruited [lean (n = 8) and overweight/obese (n = 8)]. After completing a submaximal predictive exercise test, participants were asked to attend three experimental sessions. These three visits were conducted in the morning to obtain fasting blood samples and to conduct 2 h OGTTs. The first visit was a familiarisation trial and the final two visits were conducted 2 weeks apart following 14 days of ingestion of placebo (PL, 3 g glucose/day) and then LC (3 g LC/day) ingested as two capsules 3×/day with meals. On each visit, blood was drawn at rest, at intervals during the OGTT for analysis of glucose, insulin, non-esterified fatty acids (NEFA) and total glucagon-like peptide-1 (GLP-1). Data obtained were used for determination of usual insulin sensitivity indices (HOMA-IR, AUC glucose, AUC insulin, 1st phase and 2nd phase β-cell function, estimated insulin sensitivity index and estimated metabolic clearance rate). Data were analysed using RMANOVA and post hoc comparisons where appropriate. There was a significant difference between groups for body mass, % fat and BMI with no significant difference in age and height. Mean (SEM) plasma glucose concentration at 30 min was significantly lower (p < 0.05) in the lean group on the LC trial compared with PL [8.71(0.70) PL; 7.32(0.36) LC; mmol/L]. Conversely, plasma glucose concentration was not different at 30 min, but was significantly higher at 90 min (p < 0.05) in the overweight/obese group on the LC trial [5.09(0.41) PL; 7.11(0.59) LC; mmol/L]. Estimated first phase and second phase β-cell function both tended to be greater following LC in the lean group only. No effects of LC were observed on NEFA or total GLP-1 response to OGTT. It is concluded that LC supplementation induces changes in blood glucose handling/disposal during an OGTT, which is not influenced by GLP-1. The glucose handling/disposal response to oral LC is different between lean and overweight/obese suggesting that further investigation is required. LC effects on gastric emptying and/or direct ‘insulin-like’ actions on tissues should be examined in larger samples of overweight/obese and lean participants, respectively.  相似文献   

19.

Background  

Insulin receptor substrate (IRS) proteins are key moderators of insulin action. Their specific regulation determines downstream protein-protein interactions and confers specificity on growth factor signalling. Regulatory mechanisms that have been identified include phosphorylation of IRS proteins on tyrosine and serine residues and ubiquitination of lysine residues. This study investigated other potential molecular mechanisms of IRS-1 regulation.  相似文献   

20.

Aims

The search for natural agents that minimize obesity-associated disorders is receiving special attention. In this regard, the present study aimed to evaluate the prophylactic effect of Chlorella vulgaris (CV) on body weight, lipid profile, blood glucose and insulin signaling in liver, skeletal muscle and adipose tissue of diet-induced obese mice.

Main methods

Balb/C mice were fed either with standard rodent chow diet or high-fat diet (HFD) and received concomitant treatment with CV for 12 consecutive weeks. Triglyceride, free fatty acid, total cholesterol and fractions of cholesterol were measured using commercial assay. Insulin and leptin levels were determined by enzyme-linked immunosorbent assay (ELISA). Insulin and glucose tolerance tests were performed. The expression and phosphorylation of IRβ, IRS-1 and Akt were determined by Western blot analyses.

Key findings

Herein we demonstrate for the first time in the literature that prevention by CV of high-fat diet-induced insulin resistance in obese mice, as shown by increased glucose and insulin tolerance, is in part due to the improvement in the insulin signaling pathway at its main target tissues, by increasing the phosphorylation levels of proteins such as IR, IRS-1 and Akt. In parallel, the lower phosphorylation levels of IRS-1ser307 were observed in obese mice. We also found that CV administration prevents high-fat diet-induced dyslipidemia by reducing triglyceride, cholesterol and free fatty acid levels.

Significance

We propose that the modulatory effect of CV treatment preventing the deleterious effects induced by high-fat diet is a good indicator for its use as a prophylactic–therapeutic agent against obesity-related complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号