首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New advances in coenzyme Q biosynthesis   总被引:2,自引:0,他引:2  
Catherine F. Clarke 《Protoplasma》2000,213(3-4):134-147
Summary Coenzyme Q (or ubiquinone) is the product of two distinct biosynthetic pathways: the lipid tail of coenzyme Q is formed via the isoprene biosynthetic pathway, and the quinone ring derives from the metabolism of either shikimic acid or tyrosine. In general, eukaryotic organisms use the classical mevalonate pathway to form isopentenyl- and dimethylallyl-diphosphate, the five carbon building blocks of the polyisoprenoid tail, and prokaryotes use 1-deoxy-D-xylulose-5-phosphate, formed via the Rohmer pathway. The quinone ring precursor is 4-hydroxybenzoic acid, which is formed directly from chorismate inSaccharomyces cerevisiae andEscherichia coli, or from tyrosine in animal cells. Ring modification steps including prenylation, decarboxylation, and successive hydroxylation and methylation steps form the fully substituted benzoquinone ring of coenzyme Q. Many of the genes and polypeptides involved in coenzyme Q biosynthesis have been isolated and characterized by utilizing strains ofE. coli andS. cerevisiae with mutations in theubi andCOQ genes, respectively. This article reviews recent progress in characterizing the biosynthesis of coenzyme Q inE. coli, S. cerevisiae, and other eukaryotic organisms.  相似文献   

2.
Coenzyme Q (ubiquinone or Q) is a redox-active lipid found in organisms ranging from bacteria to mammals in which it plays a crucial role in energy-generating processes. Q biosynthesis is a complex pathway that involves multiple proteins. In this work, we show that the uncharacterized conserved visC gene is involved in Q biosynthesis in Escherichia coli, and we have renamed it ubiI. Based on genetic and biochemical experiments, we establish that the UbiI protein functions in the C5-hydroxylation reaction. A strain deficient in ubiI has a low level of Q and accumulates a compound derived from the Q biosynthetic pathway, which we purified and characterized. We also demonstrate that UbiI is only implicated in aerobic Q biosynthesis and that an alternative enzyme catalyzes the C5-hydroxylation reaction in the absence of oxygen. We have solved the crystal structure of a truncated form of UbiI. This structure shares many features with the canonical FAD-dependent para-hydroxybenzoate hydroxylase and represents the first structural characterization of a monooxygenase involved in Q biosynthesis. Site-directed mutagenesis confirms that residues of the flavin binding pocket of UbiI are important for activity. With our identification of UbiI, the three monooxygenases necessary for aerobic Q biosynthesis in E. coli are known.  相似文献   

3.
We previously reported that the SbROMT3syn recombinant protein catalyzes the production of the methylated resveratrol derivatives pinostilbene and pterostilbene by methylating substrate resveratrol in recombinant E. coli. To further study the production of stilbene compounds in E. coli by the expression of enzymes involved in stilbene biosynthesis, we isolated three stilbene synthase (STS) genes from rhubarb, peanut, and grape as well as two resveratrol O-methyltransferase (ROMT) genes from grape and sorghum. The ability of RpSTS to produce resveratrol in recombinant E. coli was compared with other AhSTS and VrSTS genes. Out of three STS, only AhSTS was able to produce resveratrol from p-coumaric acid. Thus, to improve the solubility of RpSTS, VrROMT, and SbROMT3 in E. coli, we synthesized the RpSTS, VrROMT and SbROMT3 genes following codon-optimization and expressed one or both genes together with the cinnamate/4-coumarate:coenzyme A ligase (CCL) gene from Streptomyces coelicolor. Our HPLC and LC-MS analyses showed that recombinant E. coli expressing both ScCCL and RpSTSsyn led to the production of resveratrol when p-coumaric acid was used as the precursor. In addition, incorporation of SbROMT3syn in recombinant E. coli cells produced resveratrol and its mono-methylated derivative, pinostilbene, as the major products from p-coumaric acid. However, very small amounts of pterostilbene were only detectable in the recombinant E. coli cells expressing the ScCCL, RpSTSsyn and SbROMT3syn genes. These results suggest that RpSTSsyn exhibits an enhanced enzyme activity to produce resveratrol and SbROMT3syn catalyzes the methylation of resveratrol to produce pinostilbene in E. coli cells.  相似文献   

4.
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His6-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted l-Ala, l-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for l-Ala. S. aureus MurE was very specific for l-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and l-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (l-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and l-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.  相似文献   

5.
Niacin significantly reduced the bacteristatic effect of 1 mM paraquat for Escherichia coli. Without niacin (an intermediate in the salvage pathway for pyridine nucleotide coenzyme biosynthesis), the NAD concentration was decreased rapidly and significantly in E. coli during paraquat poisoning. Niacin prevented the decline in NAD in paraquat-poisoned cells; quinolinate (an intermediate in de novo NAD biosynthesis prior to the entry point of niacin) did not. These data suggest that paraquat poisons the de novo pathway of pyridine nucleotide coenzyme biosynthesis. Similar consequences have been reported to result from hyperbaric oxygen poisoning of E. coli; thus, there is growing evidence for a common mechanism of toxicity for hyperoxia and paraquat.  相似文献   

6.
7.
Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to ‘graze’ on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan “plaque” formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.  相似文献   

8.
Escherichia coli and the cellular slime mold Dictyostelium discoideum form stable viscous symbiotic colonies in the laboratory. To examine changes in E. coli gene expression during establishment of this symbiotic relationship, cells of symbiotic co-cultures and monocultures at various time points were subjected to microarrays analysis. Genes changed significantly over time compared to the initial gene expression level were determined as characteristics of GO function categories. The categories that appeared significantly at the same sampling time points between the two cultures were also identified. Up-regulation of genes from several GO categories associated with polysaccharide synthesis, cell wall degradation, and iron acquisition as well as down-regulation of genes from GO categories associated with biosynthesis through starvation response were observed in co-cultures, indicating exchange of molecules between the two organisms. Up-regulation of genes from several GO categories associated with anaerobic respiration and flagella biosynthesis were also observed, indicating that the environment inside symbiotic colonies was similar to that in developed biofilms. Up-regulation of genes associated with energy-generating systems indicated that E. coli prolonged survival within the symbiotic colony. Thus, E. coli showed not only molecule exchange but also altered expression of various genes in symbiosis with D. discoideum.  相似文献   

9.
Porphyromonas gingivalis peptidylarginine deiminase (PAD) catalyzes the deimination of peptidylarginine residues of various peptides to produce peptidylcitrulline and ammonia. P. gingivalis is associated with adult-onset periodontitis and cardiovascular disease, and its proliferation depends on secretion of PAD. We have expressed two recombinant forms of the P. gingivalis PAD in Escherichia coli, a truncated form with a 43-amino acid N-terminal deletion and the full-length form of PAD as predicted from the DNA sequence. Both forms contain a poly-His tag and Xpress epitope at the N-terminus to aid in detection and purification. The activities and stabilities of these two forms have been evaluated. PAD is cold sensitive; it aggregates within 30 min at 4 °C, and optimal storage conditions are at 25 °C in the presence of a reducing agent. PAD is not a metalloenzyme and does not need a cofactor for catalysis or stability. Multiple l-arginine analogs, various arginine-containing peptides, and free l-arginine were used to evaluate substrate specificity and determine kinetic parameters.  相似文献   

10.
Coenzyme Q is a redox active lipid essential for aerobic respiration. The Coq4 polypeptide is required for Q biosynthesis and growth on non-fermentable carbon sources, however its exact function in this pathway is not known. Here we probe the functional roles of Coq4p in a yeast Q biosynthetic polypeptide complex. A yeast coq4-1 mutant harboring an E226K substitution is unable to grow on nonfermentable carbon sources. The coq4-1 yeast mutant retains significant Coq3p O-methyltransferase activity, and mitochondria isolated from coq4-1 and coq4-2 (E121K) yeast point mutants contain normal steady state levels of Coq polypeptides, unlike the decreased levels of Coq polypeptides generally found in strains harboring coq gene deletions. Digitonin-solubilized mitochondrial extracts prepared from yeast coq4 point mutants show that Coq3p and Coq4 polypeptides no longer co-migrate as high molecular mass complexes by one- and two-dimensional Blue Native-PAGE. Similarly, gel filtration chromatography confirms that O-methyltransferase activity, Coq3p, Coq4p, and Coq7p migration are disorganized in the coq4-1 mutant mitochondria. The data suggest that Coq4p plays an essential role in organizing a Coq enzyme complex required for Q biosynthesis.  相似文献   

11.
Edwardsiella tarda and Streptococcus iniae are important aquaculture pathogens that affect many species of farmed fish. In this study, we analyzed the expression, activity, and immunoprotective potential of E. tarda heat shock protein DnaK. We found that dnaK expression was upregulated under conditions of heat shock, oxidative stress, and infection of host cells. Recombinant DnaK (rDnaK) purified from Escherichia coli exhibited ATPase activity and induced protection in Japanese flounder (Paralichthys olivaceus) against lethal E. tarda challenge. On the basis of these results and our previous observation that a protective S. iniae antigen Sia10 which, when expressed heterogeneously in E. coli DH5α, is secreted into the extracellular milieu, we constructed a chimeric antigen by fusing DnaK to Sia10. The resulting fusion protein Sia10-DnaK was expressed in DH5α via the plasmid pTDK. Western blot analysis indicated that Sia10-DnaK was detected in the culture supernatant of DH5α/pTDK. When flounder were vaccinated with live DH5α/pTDK, strong protection was observed against both E. tarda and S. iniae. ELISA analysis detected specific serum antibody production in fish vaccinated with rDnaK and DH5α/pTDK. Taken together, these results indicate that rDnaK is an intrinsic ATPase with immunoprotective property and that Sia10-DnaK delivered by a live bacterial host is an effective bivalent vaccine candidate against E. tarda and S. iniae infection.  相似文献   

12.
13.
Kang Z  Du L  Kang J  Wang Y  Wang Q  Liang Q  Qi Q 《Bioresource technology》2011,102(11):6600-6604
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.  相似文献   

14.
Previously, we described the production of N-acetylneuraminic acid (NeuAc) from N-acetylglucosamine (GlcNAc) in a system combining recombinant Escherichia coli expressing GlcNAc 2-epimerase (slr1975), E. coli expressing NeuAc synthetase (neuB), and Corynebacterium ammoniagenes. However, this system was unsuitable for large-scale production because of its complexity and low productivity. To overcome these problems, we constructed a recombinant E. coli simultaneously overexpressing slr1975 and neuB. This recombinant E. coli produced 81 mM (25 g/L) NeuAc in 22 h without the addition of C. ammoniagenes cells. For manufacturing on an industrial scale, it is preferable to use unconcentrated culture broth as the source of enzymes, and therefore, a high-density cell culture is required. An acetate-resistant mutant strain of E. coli (HN0074) was selected as the host strain because of its ability to grow to a high cell density. The NeuAc aldolase gene of E. coli HN0074 was disrupted by homologous recombination yielding E. coli N18-14, which cannot degrade NeuAc. After a 22 h reaction with 540 mM (120 g/L) GlcNAc in a 5 L jar fermenter, the culture broth of E. coli N18-14 overexpressing slr1975 and neuB contained 172 mM (53 g/L) NeuAc.  相似文献   

15.
Predator-prey interactions have been found at all levels within ecosystems. Despite their ecological ubiquity and importance, the process of transition to a stable coexistent state has been poorly verified experimentally. To investigate the stabilization process of predator-prey interactions, we previously constructed a reproducible experimental predator-prey system between Dictyostelium discoideum and Escherichia coli, and showed that the phenotypically changed E. coli contributed to stabilization of the system. In the present study, we focused on the transition to stable coexistence of both species after the phenotypic change in E. coli. Analysis of E. coli cells isolated from co-culture plates as single colony enabled us to readily identify the appearance of phenotypically changed E. coli that differed in colony morphology and growth rate. It was also demonstrated that two types of viscous colony, i.e., the dense-type and sparse-type, differing in spatial distribution of both species emerged probabilistically and all of the viscous colonies maintained stably were of the sparse-type. These results suggest that the phenotypically changed E. coli may produce two types of viscous colonies probabilistically. The difference in spatial distribution would affect localized interactions between both species and then cause probabilistic stabilization of predator-prey interactions.  相似文献   

16.
Coenzyme Q (Q or ubiquinone) is a redox-active polyisoprenylated benzoquinone lipid essential for electron and proton transport in the mitochondrial respiratory chain. The aromatic ring 4-hydroxybenzoic acid (4HB) is commonly depicted as the sole aromatic ring precursor in Q biosynthesis despite the recent finding that para-aminobenzoic acid (pABA) also serves as a ring precursor in Saccharomyces cerevisiae Q biosynthesis. In this study, we employed aromatic 13C6-ring-labeled compounds including 13C6-4HB, 13C6-pABA, 13C6-resveratrol, and 13C6-coumarate to investigate the role of these small molecules as aromatic ring precursors in Q biosynthesis in Escherichia coli, S. cerevisiae, and human and mouse cells. In contrast to S. cerevisiae, neither E. coli nor the mammalian cells tested were able to form 13C6-Q when cultured in the presence of 13C6-pABA. However, E. coli cells treated with 13C6-pABA generated 13C6-ring-labeled forms of 3-octaprenyl-4-aminobenzoic acid, 2-octaprenyl-aniline, and 3-octaprenyl-2-aminophenol, suggesting UbiA, UbiD, UbiX, and UbiI are capable of using pABA or pABA-derived intermediates as substrates. E. coli, S. cerevisiae, and human and mouse cells cultured in the presence of 13C6-resveratrol or 13C6-coumarate were able to synthesize 13C6-Q. Future evaluation of the physiological and pharmacological responses to dietary polyphenols should consider their metabolism to Q.  相似文献   

17.
18.
The small heat shock protein IbpB of Escherichia coli can accelerate protein disaggregation from inclusion body by Hsp100-Hsp70 re-activation system in vitro. It was therefore hypothesized that overexpression of IbpB might be able to promote protein disaggregation from inclusion body, by which more soluble recombinant proteins would be obtained. The overexpression of IbpB actually enhanced production of more active soluble XynB of Streptomyces olivaceovirdis in E. coli BL21(DE3). Surprisingly, the disaggregation of XynB from inclusion body was not accelerated. It seemed that the overexpressed IbpB protected improperly or partially folded XynB from aggregation and mediated the subsequent refolding. These results show potential of improving production of active heterologous proteins in E. coli.  相似文献   

19.
The human SBDS gene and its yeast ortholog SDO1 encode essential proteins that are involved in ribosome biosynthesis. SDO1 has been implicated in recycling of the ribosomal biogenesis factor Tif6p from pre-66S particles as well as in translation activation of 60S ribosomes. The SBDS protein is highly conserved, containing approximately 250 amino acid residues in animals, fungi and Archaea, while SBDS orthologs of plants and a group of protists contain an extended C-terminal region. In this work, we describe the characterization of the Trypanosoma cruzi SBDS ortholog (TcSBDS). TcSBDS co-fractionates with polysomes in sucrose density gradients, which is consistent with a role in ribosome biosynthesis. We show that TcSBDS contains a C-terminal extension of 200 amino acids that displays the features of intrinsically disordered proteins as determined by proteolytic, circular dichroism and NMR analyses. Interestingly, the C-terminal extension is responsible for TcSBDS–RNA interaction activity in electrophoretic mobility shift assays. This finding suggests that Trypanosomatidae and possibly also other organisms containing SBDS with extended C-terminal regions have evolved an additional function for SBDS in ribosome biogenesis.  相似文献   

20.
Phagocytosis assays employing class I [interleukin 12 (IL-12)], and class II [gamma interferon (gIFN) and IL-10] human recombinant cytokines were carried out to determine the biological effects of these molecules on innate immune responses in the earthworm Eisenia hortensis. Coelomocytes from E. hortensis were pre-incubated with the cytokines for 16-20 h in vitro followed by introduction of Escherichia coli expressing green fluorescent protein (E. coli/GFP). The pro-inflammatory cytokines IL-12 and gIFN stimulated statistically significant (p ? 0.05) enhanced phagocytosis of E. coli/GFP by hyaline amoebocytes as determined by flow cytometry; 10 out of 21 earthworms (48%) responded to IL-12, while eight out of 21 (38%) responded to gIFN. In contrast, the anti-inflammatory cytokine IL-10 neither stimulated nor inhibited phagocytosis in nine earthworms tested. These results demonstrate that vertebrate pro-inflammatory cytokines influence invertebrate cellular responses of immune cells causing enhanced phagocytic activity in earthworm coelomocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号