首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg2+ homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg2+ in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg2+ homeostasis and how these mechanisms are altered under specific pathological conditions.  相似文献   

2.
Total hepatic Mg2+ content decreases by >25% in animals maintained for 2 weeks on Mg2+ deficient diet, and results in a >25% increase in glucose 6-phosphatase (G6Pase) activity in isolated liver microsomes in the absence of significant changed in enzyme expression. Incubation of Mg2+-deficient microsomes in the presence of 1 mM external Mg2+ returned G6Pase activity to levels measured in microsomes from animals on normal Mg2+ diet. EDTA addition dynamically reversed the Mg2+ effect. The effect of Mg2+ or EDTA persisted in taurocholic acid permeabilized microsomes. An increase in G6Pase activity was also observed in liver microsomes from rats starved overnight, which presented a ∼15% decrease in hepatic Mg2+ content. In this model, G6Pase activity increased to a lesser extent than in Mg2+-deficient microsomes, but it could still be dynamically modulated by addition of Mg2+ or EDTA. Our results indicate that (1) hepatic Mg2+ content rapidly decreases following starvation or exposure to deficient diet, and (2) the loss of Mg2+ stimulates G6P transport and hydrolysis as a possible compensatory mechanism to enhance intrahepatic glucose availability. The Mg2+ effect appears to take place at the level of the substrate binding site of the G6Pase enzymatic complex or the surrounding phospholipid environment.  相似文献   

3.
Cardiac ventricular myocytes extrude a sizeable amount of their total Mg2+ content upon stimulation by β-adrenergic agonists. This extrusion occurs within a few minutes from the application of the agonist, suggesting the operation of rapid and abundantly represented Mg2+ transport mechanisms in the cardiac sarcolemma. The present study was aimed at characterizing the operation of these transport mechanisms under well defined conditions. Male Sprague-Dawley rats were used to purify a biochemical standardized preparation of sealed rat cardiac sarcolemmal vesicles. This experimental model has the advantage that trans-sarcolemmal cation transport can be studied under specific extra- and intra-vesicular ionic conditions, in the absence of intracellular organelles, and buffering or signaling components. Magnesium ion (Mg2+) transport was assessed by atomic absorbance spectrophotometry. The results reported here indicate that: (1) sarcolemma vesicles retained trapped intravesicular Mg2+ in the absence of extravesicular counter-ions; (2) the addition of Na+ or Ca2+ induced a rapid and concentration-dependent Mg2+ extrusion from the vesicles; (3) co-addition of maximal concentrations of Na+ and Ca2+ resulted in an additive Mg2+ extrusion; (4) Mg2+ extrusion was blocked by addition of amiloride or imipramine; (5) pre-treatment of sarcolemma vesicles with alkaline phosphatase at the time of preparation completely abolished Na+- but not Ca2+-induced Mg2+ extrusion; (6) Na+-dependent Mg2+ transport could be restored by stimulating vesicles loaded with protein kinase A catalytic subunit and ATP with membrane-permeant cyclic-AMP analog; (7) extra-vesicular Mg2+ could be accumulated in exchange for intravesicular Na+ via a mechanism inhibited by amiloride or alkaline phosphatase treatment; (8) Mg2+ accumulation could be restored via cAMP/protein kinase A protocol. Overall, these data provide compelling evidence for the operation of distinct Na+- and Ca2+-dependent Mg2+ extrusion mechanisms in sarcolemma vesicles. The Na+-dependent mechanism appears to be specifically activated via protein kinase A/cAMP-dependent phosphorylation process, and can operate in either direction based upon the cation concentration gradient across the sarcolemma. The Ca2+-dependent mechanism, instead, only mediates Mg2+ extrusion in a cAMP-independent manner.  相似文献   

4.
Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and -ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or -ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of -ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike -ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.  相似文献   

5.
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation. This work was supported by National Institutes of Health Grant HL 18708.  相似文献   

6.
Magnesium transport and function in plants: the tip of the iceberg   总被引:19,自引:0,他引:19  
Orit Shaul 《Biometals》2002,15(3):307-321
The maintenance of Mg2+ homeostasis in the plant is essential for viability. This review describes Mg2+ functions and balancing in plants, with special focus on the existing knowledge of the involved transport mechanisms. Mg2+ is essential for the function of many cellular enzymes and for the aggregation of ribosomes. Mg2+ concentrations also modulate ionic currents across the chloroplast and the vacuolar membranes, and might thus regulate ion balance in the cell and stomatal opening. The significance of Mg2+ homeostasis has been particularly established with regard to Mg2+'s role in photosynthesis. Mg2+ is the central atom of the chlorophyll molecule, and fluctuations in its levels in the chloroplast regulate the activity of key photosynthetic enzymes. Relatively little is known of the proteins mediating Mg2+ uptake and transport in plants. The plant vacuole seem to play a key role in Mg2+ homeostasis in plant cells. Physiological and molecular evidence indicate that Mg2+ entry to the vacuole is mediated by Mg2+/H+ exchangers. The Arabidopsis vacuolar Mg2+/H+ exchanger, AtMHX, is highly transcribed at the vascular tissue, apparently most abundantly at the xylem parenchyma. Inclusion of Mg2+ ions into the vacuoles of this tissue may determine their partitioning between the various plant organs. Impacts of Mg2+ imbalance are described with respect for both plant physiology and for its nutritional value to animal and human.  相似文献   

7.
Involvement of ERK1/2 and p38 in Mg2+ accumulation in liver cells   总被引:10,自引:0,他引:10  
Activation of PKC signaling induces Mg2+ accumulation in liver cells. To test the hypothesis that PKC induces Mg2+ accumulation via MAPKs activation, hepatocytes were incubated in the presence of PD98059 and SB202190 as specific inhibitors of ERK1/2 and p38, respectively, and stimulated for Mg2+ accumulation by addition of PMA or OAG. Accumulation of Mg2+ within the cells was measured by atomic absorbance spectrophotometry in the acid extract of cell pellet. The presence of either inhibitor completely abolished Mg2+ accumulation irrespective of the dose of agonist utilized while having no discernible effect on β -adrenoceptor mediated Mg2+ extrusion. A partial inhibition on α 1-adrenoceptor mediated Mg2+ extrusion was observed only in cells treated with PD98059. To confirm the inhibitory effect of PD98509 and SB202190, total and basolateral liver plasma membrane vesicles were purified in the presence of either MAPK inhibitor during the isolation procedure. Consistent with the data obtained in intact cells, liver plasma membrane vesicles purified in the presence of PD98509 or SB202190 lost the ability to accumulate Mg2+in exchange for intra-vesicular entrapped Na+ while retaining the ability to extrude entrapped Mg2+ in exchange for extra-vesicular Na+. These data indicate that ERK1/2 and p38 are involved in mediating Mg2+ accumulation in liver cells following activation of PKC signaling. The absence of a detectable effect of either inhibitor on β -adrenoceptor induced, Na+-dependent Mg2+ extrusion in intact cells and in purified plasma membrane vesicles further support the hypothesis that Mg2+ extrusion and accumulation occur through distinct and differently regulated transport mechanisms.  相似文献   

8.
The interaction of various hormones and regucalcin on (Ca2+–Mg2+)-ATPase activity in rat liver plasma membranes was investigated. The presence of epinephrine (10–6–10–4 M), and insulin (10–8–10 M) in the reaction mixture produced a significant increase in (Ca2+–Mg2+)-ATPase activity, while the enzyme activity was decreased significantly by calcitonin, (3×10–8–3×10–6 M). These hormonal effects, except for calcitonin, were clearly inhibited by the presence of vanadate (10–4 M) which can inhibit the Ca2+-dependent phosphorylation of enzyme. Meanwhile, regucalcin (0.25 and 0.50 M), isolated from rat liver cytosol, elevated significantly (Ca2+–Mg2+)-ATPase activity in the plasma membranes, although this elevation was not inhibited by vanadate (10–4 M). the epinephrine (10–5 M) or phenylephrine (10–4 M)-induced increase in (Ca2+–Mg2+)-ATPase activity was disappeared in the presence of regucalcin; in this case the effect of regucalcin was also weakened. However, the inhibitory effect of calcitonin (3×10–6 M) was not weakened by the presence of regucalcin (0.5 M). Moreover, GTP (10–5 and 10–4 M)-induced increase in (Ca2+–Mg2+)-ATPase activity was not seen in the presence of regucalcin (0.25 M). The present finding suggests that the activating mechanism of regucalcin on (Ca2+–Mg2+)-ATPase is not involved on GTP-binding protein which modulates the receptor-mediated hormonal effect in rat liver plasma membranes.  相似文献   

9.
We have addressed the possibility that Ca2+, Mg2+ and K+ ions play a central role in governing the morphological and biochemical changes attributed to apoptotic cell death. By removing Ca2+, Mg2+ or K+ ions from the cell culture medium we were able to assess the contribution of each ion to hybridoma cell growth and viability. The differences were explained in terms of a possible reduction in their respective intracellular levels. From several lines of evidence, the deprivation of K+ ions was the most detrimental to cellular growth and viability and induced significant levels of early apoptotic cells. Another effect of this deprivation was to weaken the plasma membranes without causing membrane breakdown; exposure to high agitation rates confirmed fragility of the cell membranes. Removal of Mg2+ caused a reduction in the levels of early apoptotic cells and predisposed cells to high levels of primary necrotic death. The lower levels of apoptotic cells failed to demonstrate the classic nuclear morphology associated with apoptosis, while retaining other apoptotic features. These results highlighted the importance of utilizing several assays for the determination of apoptosis. The absence of Ca2+ appeared to be the mildest insult, but its deprivation did accelerate a significant decline in culture by increasing apoptotic death. Hybridoma cells overexpressing the apoptotic suppresser gene bcl-2 were protected from the predominantly necrosis inducing effects of Mg2+ ion deprivation and apoptosis inducing effects of Ca2+ ion deprivation. However, apoptosis was not as effectively suppressed in bcl-2 cells responding to incubation in K+ free medium. The inclusion of bcl-2 activity in the mechanisms of Ca2+ Mg2+ or K+ deprivation induced cell death emphasizes a close relationship between ionic dissipation and the apoptotic process.  相似文献   

10.
Two types of Na+-independent Mg2+ efflux exist in erythrocytes: (1) Mg2+ efflux in sucrose medium and (2) Mg2+ efflux in high Cl media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na+-independent Mg2+ efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K+,Cl- and Na+,K+,Cl-symport, Na+/H+-, Na+/Mg2+-, Na+/Ca2+- and K+(Na+)/H+ antiport, Ca2+-activated K+ channel and Mg2+ leak flux. We suggest that, in choline Cl medium, Na+-independent Mg2+ efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg2+ efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg2+ to the same degree. The Kd value for inhibition of [14C]choline efflux and for inhibition of Mg2+ efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg2+ efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg2+ efflux was reduced to the same degree by these inhibitors as was the [14C]choline efflux.  相似文献   

11.
Essential metal ion homeostasis is based on regulated uptake of metal ions, both during its scarcity and abundance.Pseudomonas putida strain S4, a multimetal resistant bacterium, was employed to investigate Ni2+ entry into cells. It was observed that Mg2+ regulates the entry of Ni2+ and by this plays a protective role to minimize Ni2+ toxicity in this strain. This protection was evident in both growth as well as viability. Intracellular accumulation of Ni2+ varied in accordance with Mg2+ concentrations in the medium. It was hypothesized that Ni2+ enters the cell using a broad Mg2+ pump, i.e. the CorA system, as the CorA inhibitor, i.e. Co(III) Hex, also inhibits Ni2+ uptake. This led to the inference that Mg2+-based protection was basically due to competitive inhibition of Ni2+ uptake. We also show that Zn2+ can further regulate the entry of Ni2+  相似文献   

12.
In a previous report (Yu and Yang,Biochem. Biophys. Res. Commun. 207, 140–147 (1995)], phosphorylase b kinase from rabbit skeletal muscle was found to be phosphorylated and activated by a cyclic nucleotide- and Ca2+-independent protein kinase previously identified as an autophosphorylation-dependent multifunctional protein kinase (autokinase) from brain and liver (Yanget al, J. Biol. Chem. 262, 7034–7040, 9421–9427 (1987)]. In this report, the effect of Mg2+ ion concentration on the auto-kinase-catalyzed activation of phosphorylase b kinase is investigated. The levels of phosphorylation and activation of phosphorylase b kinase catalyzed by auto-kinase are found to be dependent on the concentration of Mg2+ ion used. Phosphorylation of phosphorylase b kinase at high Mg2+ ion (>9 mM) is 2–3 times higher than that observed at low Mg2+ ion (1 mM) and this results in a further 2- to 3-fold activation of the enzyme activity at high Mg2+ ion. Analysis of the phosphorylation stoichiometry of and subunits of phosphorylase b kinase at different Mg2+ ion concentrations further reveals that the phosphorylation level of the subunit remains almost unchanged, whereas the phosphorylation level of the subunit increases dramatically and correlates with the increased enzyme activity. In similarity with the subunit, phosphorylations of myelin basic protein and histone 2A by auto-kinase are also unaffected by Mg2+ ion. Taken together, the results provide initial evidence that Mg2+ ion may specifically render thea subunit a better substrate for auto-kinase to cause further phosphorylation/activation of phosphorylase b kinase, representing a new mode of control mechanism for the regulation of auto-kinase involved in the phosphorylation and concurrent activation of phosphorylase b kinase.  相似文献   

13.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

14.
Depletion of Mg2+ in the growth medium for chicken embryo fibroblasts produces a large decrease in DNA synthesis as measured by 3H-thymidine incorporation, and concomitant decreases in cellular K+ and Mg2+ and increases in Na+ and Ca2+. In cells grown in media containing 0.2 mM Ca2+, graded reduction of Mg2+ from 0.8 mM (control) to 0.016 mM produced graded decreases in DNA synthesis to 10% of control at 0.016 mM Mg2+. Concomitantly, cell cations showed graded changes, Na+ increasing to 227%, K+ decreasing to 52.5%, Mg2+ decreasing to 57.5% and Ca2+ increasing to 153.5% of control. The effects of Mg2+ depletion on DNA synthesis and cell cation content exhibited a dependence on Ca2+ concentration, the effects being larger at low Ca2+ concentration. Use of inorganic pyrophosphate in the growth medium as a selective complexor of Mg2+ caused a marked decrease in DNA synthesis which was accompanied by changes in cellular cation content similar to those produced by direct Mg2+ depletion. The effects of Mg2+ depletion on cell cation content are explainable in terms of changes in membrane permeability caused by rapid external surface exchange of bound divalent cations. Among the several interpretations of the data in terms of possible mechanisms by which changes in external Mg2+ concentration may affect cell metabolism, the most consistent with known properties of the system is the concept of a central role for intracellular free Mg2+ in the coordinate control of growth and metabolism in animal cells.  相似文献   

15.
The yeast mitochondrial unspecific channel (YMUC) sensitivity to inorganic (Ca2+ or Mg2+) or organic (hexyl or octyl-guanidine) cations was measured. The rate of oxygen consumption in State 3 and State 4, the transmembrane potential (), mitochondrial swelling, and the polyethylene-glycol mediated recontraction were used to follow opening of the YMUC. Addition of 0.4 mM PO4 did not close the YMUC, although it did enhance the sensitivity to Ca2+ (I50 decreased from 50 to 0.3 mM) and Mg2+ (I50 decreased from 5 to 0.83 mM Mg2+). The Ca2+ concentration needed to close the YMUC was higher than the concentrations usually observed in the cell. Nonetheless, Mg2+, Ca2+, and PO4 exhibited additive effects. These cations did not inhibit contraction of preswollen mitochondria, suggesting that the YMUC/cation interaction was labile. Octyl-guanidine (OG-I50 7.5 M) was the only cation which inhibited mitochondrial recontraction, probably as a result of membrane binding stabilization through its hydrophobic tail. The PO4-dependent, Ca2+/Mg2+-mediated closure of the YMUC may be a means to control the proportion of oxidative energy producing ATP or being lost as heat.  相似文献   

16.
We reported previously that a Ca2+-ATPase in rat testes and goat spermatozoa could be activated by Ca2+ alone without Mg2+, though it has a lot of similarities with the well known Ca2+, Mg2+-ATPase. Recently, we were successful in isolating the phosphorylated intermediate of the former enzyme under control conditions i.e., in the presence of low concentration of Ca2+ and at low temperature. Increase of the concentration of Ca2+ and/or temperature lead to dephosphorylation. Based on our observations, we proposed a reaction scheme comparable to that of Ca2+, Mg2+-ATPase. The findings strengthened our previous report that Mg2+-independent Ca2+-ATPase is involved in Ca2+ transport and Ca2+ uptake like Ca2+, Mg2+-ATPase.  相似文献   

17.
Magnesium ions (Mg2+) play a key role in regulating hepatic cellular functions and enzymatic activities. In the present study, we report a concentration-dependent effect of cytosolic Mg2+ on G6P and pyrophosphate (PPi) transport and hydrolysis in digitonin-permeabilized rat hepatocytes. The stimulatory effect of Mg2+ on G6P is specific but biphasic, with a maximal effect at a concentration of 0.25 mM, whereas the effect on PPi increases in a dose-dependent manner. Both effects can be abolished by addition of EDTA to the system. Addition of taurocholate, histone-2A, alamethicin or A23187 to the incubation system results in a marked decrease in the Mg2+ concentration present within the endoplasmic reticulum lumen. Under these conditions, the stimulatory effect of extra-reticular Mg2+ on G6P transport and hydrolysis is abolished. Taken together, these data suggest that cytosolic Mg2+ stimulates G6P transport by acting at the level of the substrate binding site of the G6Pase enzymatic complex or the surrounding phospholipid environment. The effect, which is lost when G6P has readily access to the ER lumen, requires physiological endoplasmic reticulum Mg2+ content.  相似文献   

18.
Neuronal ATPases comprise a wide variety of enzymes which are not uniformly distributed in different membrane preparations. Since purified vesicle fractions have Mg2+/Ca2+-ATPase, the purpose of the present study was to know whether such enzyme activities have a preferential concentration in a synaptic vesicle fraction in order to be used as markers for these organelles. Resorting to a procedure developed in this Institute, we fractionated the rat cerebral cortex by differential centrifugation following osmotic shock of a crude mitochondrial fraction and separated a purified synaptic vesicle fraction over discontinuous sucrose gradients. Mg2+/Ca2+-ATPase activities and ultrastructural studies of isolated fractions were carried out. It was observed that similar specific activities for Mg2+/Ca2+-ATPases were found in all fractions studied which contain synaptic vesicles and/or membranes. Although the present results confirm the presence of Mg2+ and Ca2+-ATPase activities in synaptic vesicles preparations, they do not favor the contention that Mg2+/Ca2+-ATPase is a good marker for synaptic vesicles.  相似文献   

19.
Sarcolemmal Ca2+/Mg2+ ecto-ATPase (Myoglein; MW 180 kD) is a membrane bound enzyme which requires a millimolar concentration of either Ca2+ or Mg2+ for maximal hydrolysis of ATP. The isoelectric point (pI) of the cardiac ecto-ATPase was 5.7. The purified Ca2+/Mg2+ ecto-ATPase from the rat heart sarcolemmal appeared as a single band with MW 90 kD in the SDS-PAGE. In order to understand the nature of this enzyme, the 90 kD band in the SDS-PAGE was electroeluted; the analysis of the eluate showed 2 prominent bands with MW 90 and 85 kD. The presence of 2 bands was further confirmed by gradient gel (10-20%) electrophoresis in 0.375 M Tris-HCl buffer, pH 8.8. Analysis of the purified Ca2+/Mg2+ ecto-ATPase as well as the electroeluted protein in a non-equilibrium linear two dimensional electrophoresis (Ampholyte pI 3.0-10.0) also showed two distinct bands. Mass spectroscopic analysis of the enzyme using different matrix combinations revealed the presence of multi-components indicating microheterogeneity in the protein structure. Treatment of the ecto-ATPase with DL-dithiothreitol did not alter the pattern of mass spectroscopic analysis and this indicated that the microheterogeneity may be due to some posttranslational modifications. It is concluded that rat cardiac Ca2+/Mg2+ ecto-ATPase is an acidic protein having two subunits. Furthermore, the enzyme shows microheterogeneity in its molecular structure.  相似文献   

20.
In order to examine the role of phospholipids in the activation of membrane bound Ca2+/Mg2+ ATPase, the activities of Ca2+ ATPase and Mg2+ ATPase were studied in heart sarcolemma after treatments with phospholipases A, C and D. The Mg2+ ATPase activity was decreased upon treating the sarcolemmal membranes with phospholipases, A, C and D; phospholipase A produced the most dramatic effect. The reduction in Mg2, ATPase activity by each phospholipase treatment was associated with a decrease in the Vmax value without any changes in the Ka value. The depression of Mg2+ ATPase in the phospholipase treated preparations was not found to be due to release of fatty acids in the medium and was not restored upon reconstitution of these membranes by the addition of synthetic phospholipids such as lecithin, lysolecithin or phosphatidic acid. In contrast to the Mg2+ ATPase, the sarcolemmal Ca2+ ATPase was affected only slightly by phospholipase treatments. The greater sensitivity of Mg- ATPase to phospholipase treatments was also apparent when deoxycholate-treated preparations were employed. These results indicate that glycerophospholipids are required for the sarcolemmal Mg2+ ATPase activity to a greater extent in comparison to that for the Ca2+ ATPase activity and the phospholipids associated with Mg2+ ATPase are predominantly exposed at the outer surface of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号