首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 (CYP)-dependent drug metabolism decreases in vivo and in cultured hepatocytes under various immunostimulatory conditions. Nitric oxide (NO) released during inflammation is presumed to be involved in this phenomenon. CYP3A4, which is abundant in the liver and small intestine and participates in the metabolism of various drugs, is known to be induced by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in the colon carcinoma cell line Caco-2. In this study we examined whether NO affected CYP3A4 gene expression induced by 1,25(OH)2D3 in Caco-2 cells. Induction of CYP3A4 mRNA by 1,25(OH)2D3 was suppressed in a dose-dependent manner by treatment with the NO donors NOR-4 (15–500 μM) or S-nitroso-N-acetyl-penicillamine (30 μM-1 mM), which spontaneously release NO. These results indicated that NO has an inhibitory effect on the induction of CYP3A4 mRNA by 1,25(OH)2D3 in Caco-2 cells. Treatment with the guanylate cyclase inhibitor ODQ failed to prevent the inhibition of induction of CYP3A4 mRNA by 1,25(OH)2D3. 8-Bromo cGMP had no effect on 1,25-(OH)2D3-induced CYP3A4 gene expression. Therefore, the suppression of CYP3A4 mRNA by NO might be mediated through a guanylate cyclase-independent pathway.  相似文献   

2.
Leukotriene B4 (LTB4) is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Previous studies have reported that the receptors of LTB4, BLT1, and BLT2 play mediatory roles in the allergic airway inflammation induced by ovalbumin (OVA). However, considering that house dust mites (HDMs) are the most prevalent allergen and well-known risk factor for asthmatic allergies, we are interested in elucidating the contributory roles of BLT1/2 in HDM-induced allergic airway inflammation. Our aim in this study was to investigate whether BLT1/2 play any roles in HDM-induced allergic airway inflammation. In this study, we observed that the levels of ligands for BLT1/2 [LTB4 and 12(S)-HETE (12(S)-hydroxyeicosatetraenoic acid)] were significantly increased in bronchoalveolar lavage fluid (BALF) after HDM challenge. Block-ade of BLT1 or BLT2 as well as of 5-lipoxygenase (5-LO) or 12-lipoxygenase (12-LO) markedly suppressed the production of TH2 cytokines (IL-4, IL-5, and IL-13) and alleviated lung inflammation and mucus secretion in an HDM-induced eosinophilic airway-inflammation mouse model. Together, these results indicate that the 5-/12-LO-BLT1/2 cascade plays a role in HDM-induced airway inflammation by mediating the production of TH2 cytokines. Our findings suggest that BLT1/2 may be a potential therapeutic target for patients with HDM-induced allergic asthma.  相似文献   

3.
Leukotriene B4 (LTB4) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB4. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and TH1/TH17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1−/− mice had delayed onset and less severe symptoms of EAE than BLT1+/+ mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1+/+, but not BLT1−/− mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-γ, TNF-α, IL-17 and IL-6 were impaired in BLT1−/− cells, as compared with BLT1+/+ cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and TH1/TH17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other TH17-mediated diseases.  相似文献   

4.
Cytochrome p450 (CYP) 4Fs metabolize leukotriene B(4) and other inflammatory mediators in the arachidonic acid cascade. Here we show that lipopolysaccharide (LPS) treatment suppresses CYP4F4 and up-regulates CYP4F5 mRNA expression in rat liver whereas renal CYP4Fs are essentially unchanged. BaSO(4) treatment, in contrast, increases both hepatic and renal CYP4F expression levels. Thus, distinct regulatory mechanisms in CYP4F expression might operate under different inflammatory prompts. To examine hepatic totipotency, primary hepatocytes were treated with varying doses of LPS resulting in decrease in all the CYP4F isoforms. Treatment of hepatocytes with 5 ng/ml of interleukin-1beta mimics the in vivo effects of LPS on CYP4F expression.  相似文献   

5.
Leukotriene B(4) (LTB(4)) is a lipid mediator that plays an important role in inflammation. Metabolism of LTB(4) by cytochrome P450 (CYP) enzymes belonging to the CYP4F subfamily is considered to be of importance for the regulation of inflammation. This study investigates LTB(4) metabolism by recombinant rat CYP4F5 and CYP4F6 expressed in a yeast system and by microsomes isolated from rat organs expressing CYP4F mRNA. CYP4F6 was found to convert LTB(4) into 19-hydoxy- and 18-hydroxy-LTB(4) with an apparent K(m) of 26 microM, and CYP4F5 was found to convert LTB(4) primarily into 18-hydroxy-LTB(4) with an apparent K(m) of 9.7 microM. The rate of formation of 18-hydroxy-LTB(4) by CYP4F5 was surprisingly high. At a substrate concentration of 30 microM, the rate of formation was about 15 nmol/min/mg microsomal protein, approximately 30 times faster than the reaction catalyzed by CYP4F6. Analysis of LTB(4) metabolism by microsomes isolated from various tissues from the rat suggests that CYP4F5 and CYP4F6 are active in the lung and to some extent in the brain, kidney, and testis. CYP4F5 and CYP4F6, due to their capacities to metabolize LTB(4), may play important roles in modulating inflammatory response in these organs.  相似文献   

6.
Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has anticancer effect on many cancers associated with chronic inflammation by both COX-2-dependent and COX-2-independent mechanisms. The non-COX-2 targets of celecoxib, however, are still a matter of research. Leukotriene B4 (LTB4) has been implicated in prostate and colon carcinogenesis, but little is known about the potential role of LTB4 in celecoxib-mediated anticancer effect. In this study, we evaluated whether LTB4 was involved in celecoxib-mediated inhibitory effect on human colon cancer HT-29 cells and human prostate cancer PC-3 cells. Our data showed that survival of both cell lines was obviously suppressed after celecoxib treatment for 72 h in a concentration-dependent manner. However, only in HT-29 cells, this inhibitory effect could be reversed by LTB4, which promoted survival of HT-29 cells rather than PC-3 cells. Consistent with these results, lioxygenase (LOX) potent inhibitor nordihydroguaiaretic acid (NDGA) had a higher inhibitory effect on HT-29 cells than PC-3 cells. Additionally, ELISA results showed that celecoxib could suppress expression of LTB4 in both cell lines, whereas, inhibition of PGE2 was only detected in HT-29 cells. These results indicate that the anticancer effect of celecoxib is COX-2-independent in HT-29 and PC-3 cells and in HT-29 cells primarily via down-regulating LTB4 production.  相似文献   

7.
8.
Caseinate elicited suspension of guinea pig peritoneal PMNs synthesized LTB4, 6t-LTB4, 12-epi-6t-LTB4 and 5HETE after incubations with A23187 and arachidonic acid. Concentrations of LTB4 peaked in 3 minutes and were then rapidly depleted. 6t-LTB4 and 12-epi-6t-LTB4 also peaked in concentrations in 3 min but were depleted slower than LTB4. NaCN inhibited the depletion of LTB4 in a dose dependent fashion without dramatically affecting biosythesis.  相似文献   

9.
The effect of platelet activating factor (PAF), a potent lipid mediator of inflammation, was examined in the induction of airway hyperreactivity to known mediators of anaphylaxis. Concentration-dependent contractions of the isolated guinea-pig trachea to PAF (10−7 − 10−5M) were produced and an EC50 value was found to be 7.5 × 10−7M. Pretreatment for 30 min with a known PAF inhibitor, CV-3988 (10−5 or 10−4M), produced significant inhibition of PAF contractions; however, at 10−6M, CV-3988 had no effect. In the presence of meclofenamic acid (10−6M), the concentration-response curve to PAF was shifted significantly upward and to the left. This potentiation could be reversed by pretreating the tissues with the peptidoleukotriene antagonists, FPL 55712 or SK&F 102922 (10−5M). Pretreatment with PAF concentrations having essentially no intrinsic activity (10−8, 10−7) significantly enhanced the contraction of guinea-pig trachea to various concentrations of LTD4 and to certain concentrations of a thromboxane mimic (U-46619). Pretreatment with lyso-PAF failed to potentiate the LTD4 response, while pretreatment with CV-3988 reverse the potentiation by PAF of the lower concentrations of LTD4. However, PAF failed to enhance contractions (with or without the presence of meclofenamic acid) to acetylcholine, histamine, PGD2 or LTC4 (in the presence of serine borate). These results indicate a possible role for PAF as a mediator of airway hyperreactivity.  相似文献   

10.
This study tested the hypothesis that sickle red blood cell (SS-RBC) induce Toll-like receptors (TLR) and Nod-like receptor family, pyrin domain containing 3 (NLRP3)- inflammasome expression in peripheral blood mononuclear cells (PBMC). TLR and NLRP3 inflammasome could contribute to the maintenance of the inflammatory status in sickle cell anemia (SCA) patients, since SS-RBC act as danger signals activating these pathways. In this study, first, we evaluated TLR (2, 4, 5 and 9), NLRP3, Caspase-1, interleukin (IL)-1β and IL-18 expression in PBMC freshly isolated from SCA patients (SS-PBMC) in comparison with PBMC from healthy individuals (AA-PBMC). In the second moment, we investigated whether SS-RBC could interfere with the expression of these molecules in PBMC from healthy donor, in the absence or presence of hydroxyurea (HU) in vitro. TLRs and NLRP3 inflammasome expression were investigated by qPCR. IL-1β, Leukotriene-B4 (LTB4) and nitrite production were measured in PBMC (from healthy donor) culture supernatants. TLR2, TLR4, TLR5, NLRP3 and IL-1β were highly expressed in SS-PBMC when compared to AA-PBMC. Additionally, SS-RBC induced TLR9, NLRP3, Caspase-1, IL-1β and IL-18 expression and induced IL-1β, LTB4 and nitrite production in PBMC cultures. HU did not prevent TLR and NLRP3 inflammasome expression, but increased TLR2 and IL-18 expression and reduced nitrite production. In conclusion, our data suggest that TLR and inflammasome complexes may be key inducers of inflammation in SCA patients, probably through SS-RBC; also, HU does not prevent NLRP3 inflammasome- and TLR-dependent inflammation, indicating the need to develop new therapeutic strategies to SCA patients that act with different mechanisms of those observed for HU.  相似文献   

11.
Chronic low grade inflammation in adipose tissue during obesity is associated with an impairment of the insulin signaling cascade. In this study, we have evaluated the impact of palmitate or oleate overload of macrophage/Kupffer cells in triggering stress-mediated signaling pathways, in lipoapoptosis, and in the cross-talk with insulin signaling in hepatocytes. RAW 264.7 macrophages or Kupffer cells were stimulated with oleate or palmitate, and levels of M1/M2 polarization markers and the lipidomic profile of eicosanoids were analyzed. Whereas proinflammatory cytokines and total eicosanoids were elevated in macrophages/Kupffer cells stimulated with palmitate, enhanced arginase 1 and lower leukotriene B4 (LTB4) levels were detected in macrophages stimulated with oleate. When hepatocytes were pretreated with conditioned medium (CM) from RAW 264.7 or Kupffer cells loaded with palmitate (CM-P), phosphorylation of stress kinases and endoplasmic reticulum stress signaling was increased, insulin signaling was impaired, and lipoapoptosis was detected. Conversely, enhanced insulin receptor-mediated signaling and reduced levels of the phosphatases protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homolog (PTEN) were found in hepatocytes treated with CM from macrophages stimulated with oleate (CM-O). Supplementation of CM-O with LTB4 suppressed insulin sensitization and increased PTP1B and PTEN. Furthermore, LTB4 decreased insulin receptor tyrosine phosphorylation in hepatocytes, activated the NFκB pathway, and up-regulated PTP1B and PTEN, these effects being mediated by LTB4 receptor BTL1. In conclusion, oleate and palmitate elicit an opposite cross-talk between macrophages/Kupffer cells and hepatocytes. Whereas CM-P interferes at the early steps of insulin signaling, CM-O increases insulin sensitization, possibly by reducing LTB4.  相似文献   

12.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B4(LTB4). 6- -LTB4, 12- -6- -LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohyroxyeicosatetraenoic acids (i.e., 5-HETE) and w-oxidation products (i.e., 20-COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 uM), LTB4 but 5-HETE formation was impaired. (1-14C) Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate. (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

13.
BLT2 is a low-affinity receptor for leukotriene B4, a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. The aim of this study was to investigate whether BLT2 plays any role in sepsis, a systemic inflammatory response syndrome caused by infection. A murine model of cecal ligation and puncture (CLP)-induced sepsis was used to evaluate the role of BLT2 in septic inflammation. In the present study, we observed that the levels of ligands for BLT2 (LTB4 [leukotriene B4] and 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]) were significantly increased in the peritoneal lavage fluid and serum from mice with CLP-induced sepsis. We also observed that the levels of BLT2 as well as 5-lipoxygenase (5-LO) and 12-LO, which are synthesizing enzymes for LTB4 and 12(S)-HETE, were significantly increased in lung and liver tissues in the CLP mouse model. Blockade of BLT2 markedly suppressed the production of sepsis-associated cytokines (IL-6 [interleukin-6], TNF-α[[tumor necrosis factor alpha], and IL-1β [interleukin-1β] as well as IL-17 [interleukin-17]) and alleviated lung inflammation in the CLP group. Taken together, our results suggest that BLT2 cascade contributes to lung inflammation in CLP-induced sepsis by mediating the production of inflammatory cytokines. These findings suggest that BLT2 may be a potential therapeutic target for sepsis patients.  相似文献   

14.
Inflammatory responses to infection and injury must be restrained and negatively regulated to minimize damage to host tissue. One proposed mechanism involves enzymatic inactivation of the pro-inflammatory mediator leukotriene B4, but it is difficult to dissect the roles of various metabolic enzymes and pathways. A primary candidate for a regulatory pathway is omega oxidation of leukotriene B4 in neutrophils, presumptively by CYP4F3A in humans and CYP4F18 in mice. This pathway generates ω, ω-1, and ω-2 hydroxylated products of leukotriene B4, depending on species. We created mouse models targeting exons 8 and 9 of the Cyp4f18 allele that allows both conventional and conditional knockouts of Cyp4f18. Neutrophils from wild-type mice convert leukotriene B4 to 19-hydroxy leukotriene B4, and to a lesser extent 18-hydroxy leukotriene B4, whereas these products were not detected in neutrophils from conventional Cyp4f18 knockouts. A mouse model of renal ischemia–reperfusion injury was used to investigate the consequences of loss of CYP4F18 in vivo. There were no significant changes in infiltration of neutrophils and other leukocytes into kidney tissue as determined by flow cytometry and immunohistochemistry, or renal injury as assessed by histological scoring and measurement of blood urea nitrogen. It is concluded that CYP4F18 is necessary for omega oxidation of leukotriene B4 in neutrophils, and is not compensated by other CYP enzymes, but loss of this metabolic pathway is not sufficient to impact inflammation and injury following renal ischemia–reperfusion in mice.  相似文献   

15.
Glycyrrhiza glabra and its phytoconstituents have been known to possess widespread pharmacological properties as an anti-inflammatory, anti-viral, antitumour and hepatoprotective drug. In this study, we examined the inhibitory potential of extract of G. glabra (GutGard™) root and its phytoconstituents (glabridin, glycyrrhizin, and isoliquiritigenin) on both cyclooxygenase (COX) and lipoxygenase (LOX) products in order to understand the mechanism of its anti-inflammatory action. Inhibitory effect of GutGard™ and its phytoconstituents on lipopolysaccharide (LPS) induced prostaglandin E2 (PGE2), calcimycin (A23187) induced thromboxane (TXB2), and leukotriene (LTB4) release was studied using murine macrophages (J774A.1) and human neutrophil (HL-60) cells. Results revealed that, G. glabra and glabridin significantly inhibited PGE2, TXB2 (COX) and LTB4 (LOX), while, isoliquiritigenin exerted inhibitory effect only against COX products but failed to suppress LOX product. However, glycyrrhizin at the tested concentrations failed to exhibit inhibitory effect on both COX and LOX products. Here, we report for the first time that G. glabra (almost devoid of glycyrrhizin) exhibits anti-inflammatory property likely through the inhibition of PGE2, TXB2 and LTB4 in mammalian cell assay system, which could be influenced in part by glabridin and isoliquiritigenin.  相似文献   

16.

Background

Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs) exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) play a significant role in colon cancer.

Methods

Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU) in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS), microsomal prostaglandin E synthase (mPGES) were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU.

Results

PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells.

Conclusions

Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices.  相似文献   

17.
Leukotrienes are a family of proinflammatory lipid mediators of the innate immune response and are important signaling molecules in inflammatory and allergic conditions. The leukotrienes are formed from arachidonic acid, which is released from membranes by cPLA2, and further converted by 5-lipoxygenase to form the labile epoxide leukotriene (LT) A4. This intermediate is converted by either of the two enzymes, LTA4 hydrolase or LTC4 synthase, to form LTB4 or LTC4, respectively. In order for 5-lipoxygenase to work efficiently in cells, five-lipoxygenase-activating protein needs to be present. LTB4 is one of the most powerful chemotactic agents whereas LTC4 induces smooth muscle contractions, for example in the airways causing bronchoconstriction in asthmatic patients. The leukotrienes and the five enzymes/proteins involved in their formation have been subject to intense studies including drug design programs. Compounds blocking the formation or action of leukotrienes are potentially beneficial in treatment of several acute and chronic inflammatory diseases of the cardiovascular and respiratory systems. In order to succeed with drug development studies, knowledge of the molecular characteristics of the targets is indispensable. This chapter reviews the biochemistry, catalytic, and structural properties of the enzymes in the leukotriene cascade.  相似文献   

18.
DMSO differentiated U937 cells responded to 10−6 M LTD4, LTB4 and FMLP with an increase in both InsP formation and [Ca2+]i. FMLP caused a greater rise in InsPs than either LTD4 or LTB4, which were equivalent. LTD4, however, caused a greater increase in [Ca2+]i than LTB4 (4-fold) or FMLP. The FMLP [Ca2+]i and InsP responses were abolished by pertussis toxin (100 ng/ml for 4 h) but were unaffected by PMA (10−7 M for 3 min). In contrast, the LTD4 [Ca2+]i and InsP responses were reduced by only 50% by pertussis toxin, whilst PMA reduced the [Ca2+]i and InsP responses to LTD4 by 75 and 30%, respectively. These results suggest that mechanisms additional to InsP formation exist for mediating LTD4 evoked increases in [Ca2+]i.  相似文献   

19.
5-Oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A4 (LTA4) in addition to 5,12-dihydroxy-(6E,8E,10E,14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E,11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA4 was found to be pH-dependent. After incubation of LTA4 in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA4 in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC50 of 250 nM, as compared to values of 3.5 nM for leukotriene B4 (LTB4) and >500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB4 totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB4. The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB4 receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB4 receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z,14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB4.  相似文献   

20.
A well-characterized primary rat hepatocyte culture system was used to examine induction patterns of cytochrome 450 gene expression by a series of 4-n -alkyl-methylenedioxybenzene (MDBs) derivatives. Hepatocytes were treated for 24, 48, or 72 hours with 0–500 μ M of the MDB compounds, and total cellular RNA and protein from each treatment was evaluated by hybridization and immunochemical techniques. Exposure to MDB congeners possessing increasing 4-n -alkyl side-chain length (C0–C8) resulted in dose- and structure-dependent activation of CYP2B1, 2B2, 3A1, 1A1, and 1A2 gene expression. At equivalent 100 μ M concentrations, the C6 and C8 MDB congeners were more effective than the prototypical inducer phenobarbital (PB) with respect to induction potency of CYP2B1, CYP2B2, and CYP3A1 gene expression. In contrast to PB, longer side-chain–substituted MDBs effectively induced CYP1A1 and CYP1A2 gene expression, in addition to the CYP2B and CYP3A genes. At equivalent molar concentrations, the catechol derivative of C6-MDB was ineffective in its ability to induce CYP gene expression, indicating the importance of the intact methylenedioxy bridge in the induction mechanism. Levels of MDB-inducible CYP2B1 and CYP2B2 mRNA were highly correlated with CYP2B1/2 apoprotein levels, ascertained by immunoblot analysis of cultured hepatocyte S9 fractions. Compared with results from previous in vivo analysis (12), the current data indicate that pharmacodynamic factors may influence MDB induction profiles and that differences in MDB effects on CYP gene expression result depending on distinct structure-activity relationships. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 253–262, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号