首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Migraine has been associated with cardiovascular disorders. Endothelial dysfunction may be a mechanism underlying this association. The present study tested the hypothesis that endothelium-dependent vasodilation, basal endothelial nitric oxide release and endothelial fibrinolytic capacity are impaired in migraine patients.  相似文献   

2.

Background and Aims

Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO) release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals.

Methods and Results

In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR) compared to Lean Zucker Rats (LZR). Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer.

Conclusions

Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.  相似文献   

3.

Background

The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels.

Methods

The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5′ nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate.

Results

Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5’ nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries.

Conclusion

Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to endothelial dysfunction as abacavir does not impair relaxation of blood vessels. The most likely explanation of increased cardiovascular risk may be increased platelet aggregation as suggested by other studies.  相似文献   

4.

Introduction

Rheumatoid arthritis (RA) is associated with an increased risk for cardiovascular disease (CVD), and it has been postulated that RA disease-related inflammation contributes to endothelial dysfunction. The aim of the present work was to examine predictors (RA-related and CVD risk factors) and anti-tumor necrosis factor-alpha (anti-TNF-α) treatment effects on endothelial function in different vascular beds.

Methods

Microvascular endothelial function (laser Doppler imaging with iontophoresis of acetylcholine and sodium-nitroprusside), and macrovascular endothelial function (flow-mediated dilatation and glyceryl-trinitrate-mediated dilatation) were analyzed in parallel with disease activity. Individual CVD risk factors and global CVD risk were assessed cross-sectionally in 99 unselected RA patients and longitudinally (baseline, 2 weeks, and 3 months) in 23 RA patients commencing anti-TNF-α therapy.

Results

In this cross-sectional study, regression analyses revealed that markers of RA disease-related inflammation were not associated with microvascular or macrovascular endothelium-dependent function (P > 0.05); global CVD risk inversely correlated with microvascular endothelium-dependent function (P < 0.01) and with macrovascular endothelium-independent function (P < 0.01). In the longitudinal study, only microvascular endothelium-dependent function showed an improvement after 2 weeks of anti-TNF-α treatment when compared with baseline (437% ± 247% versus 319% ± 217%; P = 0.001), but no association was evident between change in endothelial function and change in inflammatory markers.

Conclusions

Classical CVD risk may influence endothelial function more than disease-related markers of inflammation in RA. Classical CVD risk factors and anti-TNF-α medication have different effects on microvascular and macrovascular endothelial function, suggesting that combined CVD-prevention approaches may be necessary. Prospective studies examining whether assessments of vascular function are predictive of long-term CV outcomes in RA are required.  相似文献   

5.

Background and Purpose

Tranilast, in addition to its capacity to inhibit mast cell degranulation, has other biological effects, including inhibition of reactive oxygen species, cytokines, leukotrienes and prostaglandin release. In the current study, we analyzed whether tranilast could alter endothelial function in rat mesenteric resistance arteries (MRA).

Experimental Approach

Acetylcholine-induced relaxation was analyzed in MRA (untreated and 1-hour tranilast treatment) from 6 month-old Wistar rats. To assess the possible participation of endothelial nitric oxide or prostanoids, acetylcholine-induced relaxation was analyzed in the presence of L-NAME or indomethacin. The participation of endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced response was analyzed by preincubation with TRAM-34 plus apamin or by precontraction with a high K+ solution. Nitric oxide (NO) and superoxide anion levels were measured, as well as vasomotor responses to NO donor DEA-NO and to large conductance calcium-activated potassium channel opener NS1619.

Key Results

Acetylcholine-induced relaxation was greater in tranilast-incubated MRA. Acetylcholine-induced vasodilation was decreased by L-NAME in a similar manner in both experimental groups. Indomethacin did not modify vasodilation. Preincubation with a high K+ solution or TRAM-34 plus apamin reduced the vasodilation to ACh more markedly in tranilast-incubated segments. NO and superoxide anion production, and vasodilator responses to DEA-NO or NS1619 remained unmodified in the presence of tranilast.

Conclusions and Implications

Tranilast increased the endothelium-dependent relaxation to acetylcholine in rat MRA. This effect is independent of the nitric oxide and cyclooxygenase pathways but involves EDHF, and is mediated by an increased role of small conductance calcium-activated K+ channels.  相似文献   

6.

Background

Obesity is associated with increased risks for development of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. We studied the potential beneficial effects of dietary supplementation of red wine polyphenol extract, Provinols™, on obesity-associated alterations with respect to metabolic disturbances and cardiovascular functions in Zucker fatty (ZF) rats.

Methodology/Principal Findings

ZF rats or their lean littermates received normal diet or supplemented with Provinols™ for 8 weeks. Provinols™ improved glucose metabolism by reducing plasma glucose and fructosamine in ZF rats. Moreover, it reduced circulating triglycerides and total cholesterol as well as LDL-cholesterol in ZF rats. Echocardiography measurements demonstrated that Provinols™ improved cardiac performance as evidenced by an increase in left ventricular fractional shortening and cardiac output associated with decreased peripheral arterial resistances in ZF rats. Regarding vascular function, Provinols™ corrected endothelial dysfunction in aortas from ZF rats by improving endothelium-dependent relaxation in response to acetylcholine (Ach). Provinols™ enhanced NO bioavailability resulting from increased nitric oxide (NO) production through enhanced endothelial NO-synthase (eNOS) activity and reduced superoxide anion release via decreased expression of NADPH oxidase membrane sub-unit, Nox-1. In small mesenteric arteries, although Provinols™ did not affect the endothelium-dependent response to Ach; it enhanced the endothelial-derived hyperpolarizing factor component of the response.

Conclusions/Significance

Use of red wine polyphenols may be a potential mechanism for prevention of cardiovascular and metabolic alterations associated with obesity.  相似文献   

7.

Introduction  

Patients with recent-onset rheumatoid arthritis (RA) have impaired brachial artery endothelial function compared with controls matched for age, sex and cardiovascular risk factors. The present study examined endothelium-dependent (flow-mediated dilatation (FMD)) and independent (glyceryl trinitrate (GTN)-mediated dilatation (GMD)) structural responses in early RA patients, and determined progress over one year.  相似文献   

8.

Background

A greater reduction in cardiovascular risk and vascular protection associated with diet rich in polyphenols are generally accepted; however, the molecular targets for polyphenols effects remain unknown. Meanwhile evidences in the literature have enlightened, not only structural similarities between estrogens and polyphenols known as phytoestrogens, but also in their vascular effects. We hypothesized that alpha isoform of estrogen receptor (ERα) could be involved in the transduction of the vascular benefits of polyphenols.

Methodology/Principal Findings

Here, we used ERα deficient mice to show that endothelium-dependent vasorelaxation induced either by red wine polyphenol extract, Provinols™, or delphinidin, an anthocyanin that possesses similar pharmacological profile, is mediated by ERα. Indeed, Provinols™, delphinidin and ERα agonists, 17-beta-estradiol and PPT, are able to induce endothelial vasodilatation in aorta from ERα Wild-Type but not from Knock-Out mice, by activation of nitric oxide (NO) pathway in endothelial cells. Besides, silencing the effects of ERα completely prevented the effects of Provinols™ and delphinidin to activate NO pathway (Src, ERK 1/2, eNOS, caveolin-1) leading to NO production. Furthermore, direct interaction between delphinidin and ERα activator site is demonstrated using both binding assay and docking. Most interestingly, the ability of short term oral administration of Provinols™ to decrease response to serotonin and to enhance sensitivity of the endothelium-dependent relaxation to acetylcholine, associated with concomitant increased NO production and decreased superoxide anions, was completely blunted in ERα deficient mice.

Conclusions/Significance

This study provides evidence that red wine polyphenols, especially delphinidin, exert their endothelial benefits via ERα activation. It is a major breakthrough bringing new insights of the potential therapeutic of polyphenols against cardiovascular pathologies.  相似文献   

9.

Aims

To determine the impact of maternal and post-weaning consumption of a high fat diet on endothelium-dependent vasorelaxation and redox regulation in adult male mouse offspring.

Methods

Female C57BL6J mice were fed an obesogenic high fat diet (HF, 45% kcal fat) or standard chow (C, 21% kcal fat) pre-conception and throughout pregnancy and lactation. Post-weaning, male offspring were continued on the same diet as their mothers or placed on the alternative diet to give 4 dietary groups (C/C, HF/C, C/HF and HF/HF) which were studied at 15 or 30 weeks of age.

Results

There were significant effects of maternal diet on offspring body weight (p<0.004), systolic blood pressure (p = 0.026) and endothelium-dependent relaxation to ACh (p = 0.004) and NO production (p = 0.005) measured in the femoral artery. With control for maternal diet there was also an effect of offspring post-weaning dietary fat to increase systolic blood pressure (p<0.0001) and reduce endothelium-dependent relaxation (p = 0.022) and ACh-mediated NO production (p = 0.007). There was also a significant impact of age (p<0.005). Redox balance was perturbed, with altered regulation of vascular enzymes involved in ROS/NO signalling.

Conclusions

Maternal consumption of a HF diet is associated with changes in vascular function and oxidative balance in the offspring of similar magnitude to those seen with consumption of a high fat diet post-weaning. Further, this disadvantageous vascular phenotype is exacerbated by age to influence the risk of developing obesity, raised blood pressure and endothelial dysfunction in adult life.  相似文献   

10.

Background  

Diabetes is associated with declining sexual function in women. However, the effects of diabetes on genital tissue structure, innervation and function remains poorly characterized. In control and streptozotocin-treated female rats, we investigated the effects of diabetes on vaginal blood flow, tissue morphology, and expression of arginase I, endothelial nitric oxide synthase (eNOS) and cGMP-dependent protein kinase (PKG), key enzymes that regulate smooth muscle relaxation. We further related these changes with estrogen receptor alpha (ERα) and androgen receptor (AR) expression.  相似文献   

11.
Mupanomunda, Maria, Jeffrey F. Williams, Charles D. Mackenzie, and Lana Kaiser. Dirofilaria immitis:heartworm infection alters pulmonary artery endothelial cell behavior.J. Appl. Physiol. 82(2): 389-398, 1997.Thepathogenesis of filariasis has generally been attributed to eitherphysical presence of the adult parasites or the host's immune responseto the parasites. However, the spectrum of filariasis cannot beentirely explained by these causes, and other mechanisms must beoperative. It is now evident that factors released by filarialparasites likely contribute to the pathogenesis of filarial diseases.Adult heartworms (Dirofilaria immitis) reside in the rightheart and pulmonary artery, so the pulmonary artery should be exposedto the highest concentration of filarial factors. We tested thehypothesis that endothelium-dependent relaxation is altered in the invitro pulmonary artery from heartworm-infected dogs. Relaxationresponses to endothelium-dependent vasodilators (methacholine,bradykinin, substance P, and A-23187) and the non-endothelium-dependent vasodilator nitroglycerin and contractile responses were measured inrings of pulmonary artery from control and heartworm-infected dogs.Endothelium-dependent relaxation was assessed in the presence andabsence of inhibitors of nitric oxide synthase, cyclooxygenase, andguanylate cyclase. Responses to methacholine, substance P, and A-23187,but not to bradykinin, nitroglycerin, norepinephrine, or KCl, weredepressed in pulmonary artery from heartworm-infected dogs whencompared with control, suggesting that changes in endothelial cell andnot vascular smooth muscle behavior are involved in altered relaxation.The mechanism of endothelium-dependent relaxation in control pulmonaryartery appears to involve nitric oxide in the case of methacholine andboth nitric oxide and a cyclooxygenase product in the case ofbradykinin and A-23187. The mechanism of endothelium-dependentrelaxation in pulmonary artery from heartworm-infected dogs was notclearly elucidated. These data provide no evidence that heartworminfection globally influences either endothelial cell receptor functionor the vascular smooth muscle guanylate cyclase guanosine 3,5-cyclicmonophosphate system, making it likely that changes in intracellularsignaling are primarily responsible for the observed alteration ofendothelium-mediated relaxation. Alteration of endothelial cellfunction by filarial parasites may be an important component inthe pathology associated with filariasis.

  相似文献   

12.

Purpose

Plant-derived oleanolic acid (OA) and its related synthetic derivatives (Br-OA and Me-OA) possess antihypertensive effects in experimental animals. The present study investigated possible underlying mechanisms in rat isolated single ventricular myocytes and in vascular smooth muscles superfused at 37°C.

Methods

Cell shortening was assessed at 1 Hz using a video-based edge-detection system and the L-type Ca2+ current (ICaL) was measured using the whole-cell patch-clamp technique in single ventricular myocytes. Isometric tension was measured using force transducer in isolated aortic rings and in mesenteric arteries. Vascular effects were measured in endothelium-intact and denuded vessels in the presence of various enzyme or channel inhibitors.

Results

OA and its derivatives increased cell shortening in cardiomyocytes isolated from normotensive rats but had no effect in those isolated from hypertensive animals. These triterpenes also caused relaxation in aortic rings and in mesenteric arteries pre-contracted with either phenylephrine or KCl-enriched solution. The relaxation was only partially inhibited by endothelium denudation, and also partly inhibited by the cyclooxygenase (COX) inhibitor indomethacin, with no additional inhibitory effect of the NO synthase inhibitor, N-ω-Nitro-L-arginine. A combination of both ATP-dependent channel inhibition by glibenclaminde and voltage-dependent K+ channel inhibition by 4-aminopyridine was necessary to fully inhibit the relaxation.

Conclusion

These data indicate that the effects of OA and its derivatives are mediated via both endothelium-dependent and independent mechanisms suggesting the involvement of COX in the endothelium-dependent effects and of vascular muscle K+ channels in the endothelium-independent effects. Finally, our results support the view that the antihypertensive action of OA and its derivatives is due to a decrease of vascular resistance with no negative inotropic effect on the heart.  相似文献   

13.

Background  

Although various endothelium-dependent relaxing factors (endothelial autacoids) are released upon the elevation of endothelial cytosolic free Ca2+ concentration (EC [Ca2+]i), the quantitative relationship between EC [Ca2+]i and vascular tone remains to be established. Moreover, whether the basal release of endothelial autacoids is modulated by basal EC [Ca2+]i is still unclear. We assessed these issues by using a novel method that allows simultaneous recording of EC [Ca2+]i and vascular displacement in dissected rat aortic segments.  相似文献   

14.

Background

Healthy middle-aged postmenopausal women have higher endothelium-dependent dilation and lower vasoconstrictor activity of endothelin-1 than men. Whether these sex-specific differences extend to patients with cardiovascular risk factors has not been investigated. The current study aimed to determine whether, in patients with cardiovascular risk factors, sex-specific differences exist in endothelium-dependent dilation and endothelin-1 activity.

Methods

Forearm blood flow responses were measured by strain-gauge plethysmography during the intra-arterial infusion of acetylcholine, sodium nitroprusside, and the selective endothelin type A receptor blocker BQ-123 in 50 women and 64 men with cardiovascular risk factors.

Results

Acetylcholine and sodium nitroprusside induced a significant vasodilation in women and men alike (p < 0.01 for both). Also BQ-123 caused a significant vasodilation (p < 0.001) in both groups. The vasodilator response to acetylcholine was greater in women compared to men; however there were no differences in the response to sodium nitroprusside and BQ-123 (p = NS for both) between the two sex groups.

Conclusions

Middle-aged women with cardiovascular risk factors have significantly higher endothelium-dependent dilation than middle-aged men; however, vascular endothelin 1 activity is similar in the two groups. These findings suggest that the presence of cardiovascular risk factors is associated with sex-specific effects on endothelium-dependent dilation but not on endothelin 1 activity. Further study is needed to confirm our findings and to characterize the mechanisms underlying this sex-specific regulation of endothelial function.  相似文献   

15.

Background

Poor gene transfer efficiency has been a major problem in developing an effective gene therapy for cystic fibrosis (CF) airway disease. Lysophosphatidylcholine (LPC), a natural airway surfactant, can enhance viral gene transfer in animal models. We examined the electrophysiological and physical effect of airway pre-treatment with variants of LPC on lentiviral (LV) vector gene transfer efficiency in murine nasal airways in vivo.

Methods

Gene transfer was assessed after 1 week following nasal instillations of a VSV-G pseudotype LV vector pre-treated with a low and high dose of LPC variants. The electrophysiological effects of a range of LPC variants were assessed by nasal transepithelial potential difference measurements (TPD) to determine tight junction permeability. Any physical changes to the epithelium from administration of the LPC variants were noted by histological methods in airway tissue harvested after 1 hour.

Results

Gene transduction was significantly greater compared to control (PBS) for our standard LPC (palmitoyl/stearoyl mixture) treatment and for the majority of the other LPC variants with longer acyl chain lengths. The LPC variant heptadecanoyl also produced significantly greater LV gene transfer compared to our standard LPC mixture. LV gene transfer and the transepithelial depolarization produced by the 0.1% LPC variants at 1 hour were strongly correlated (r2 = 0.94), but at the 1% concentration the correlation was less strong (r2 = 0.59). LPC variants that displayed minor to moderate levels of disruption to the airway epithelium were clearly associated with higher LV gene transfer.

Conclusions

These findings show the LPC variants effect on airway barrier function and their correlation to the effectiveness of gene expression. The enhanced expression produced by a number of LPC variants should provide new options for preclinical development of efficient airway gene transfer techniques.  相似文献   

16.
MethodsArthritis was induced in sixteen adult sheep by administration of bovine type II collagen into the hock joint following initial sensitisation. After 24h, sheep were administered either 150 million allogeneic ovine MPCs intravenously, or saline only. Fibrinogen and serum amyloid-A were measured in plasma to assess systemic inflammation, along with pro-inflammatory and anti-inflammatory cytokines. Animals were necropsied two weeks following arthritis induction. Coronary and digital arterial segments were mounted in a Mulvaney-Halpern wire myograph. The relaxant response to endothelium-dependent and endothelium-independent vasodilators was used to assess endothelial dysfunction.

Results and Conclusion

Arthritic sheep treated with MPC demonstrated a marked spike in plasma IL-10, 24h following MPC administration. They also showed significantly reduced plasma levels of the inflammatory markers, fibrinogen and serum amyloid A, and increased HDL. Coronary arteries from RA sheep treated with MPCs demonstrated a significantly greater maximal relaxation to bradykinin when compared to untreated RA sheep (253.6 ± 17.1% of pre-contracted tone vs. 182.3 ± 27.3% in controls), and digital arteries also demonstrated greater endothelium-dependent vasodilation. This study demonstrated that MPCs given intravenously are able to attenuate systemic inflammatory changes associated with a monoarthritis, including the development of endothelial dysfunction.  相似文献   

17.

Aims

Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation.

Methods and Results

EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively.

Conclusion

Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.  相似文献   

18.
Impairment of endothelium-dependent pulmonary vasodilation has been implicated in the development of pulmonary hypertension. Pulmonary vascular smooth muscle cells and endothelial cells communicate electrically through gap junctions; thus, membrane depolarization in smooth muscle cells would depolarize endothelial cells. In this study, we examined the effect of prolonged membrane depolarization induced by high K(+) on the endothelium-dependent pulmonary vasodilation. Isometric tension was measured in isolated pulmonary arteries (PA) from Sprague-Dawley rats, and membrane potential was measured in single PA smooth muscle cells. Increase in extracellular K(+) concentration from 4.7 to 25 mM significantly depolarized PA smooth muscle cells. The 25 mM K(+)-mediated depolarization was characterized by an initial transient depolarization (5-15 s) followed by a sustained depolarization that could last for up to 3 h. In endothelium-intact PA rings, ACh (2 microM), levcromakalim (10 microM), and nitroprusside (10 microM) reversibly inhibited the 25 mM K(+)-mediated contraction. Functional removal of endothelium abolished the ACh-mediated relaxation but had no effect on the levcromakalim- or the nitroprusside-mediated pulmonary vasodilation. Prolonged ( approximately 3 h) membrane depolarization by 25 mM K(+) significantly inhibited the ACh-mediated PA relaxation (-55 +/- 4 vs. -29 +/- 2%, P < 0.001), negligibly affected the levcromakalim-mediated pulmonary vasodilation (-92 +/- 4 vs. -95 +/- 5%), and slightly but significantly increased the nitroprusside-mediated PA relaxation (-80 +/- 2 vs. 90 +/- 3%, P < 0. 05). These data indicate that membrane depolarization by prolonged exposure to high K(+) concentration selectively inhibited endothelium-dependent pulmonary vasodilation, suggesting that membrane depolarization plays a role in the impairment of pulmonary endothelial function in pulmonary hypertension.  相似文献   

19.

Objective

Previous studies have shown that estrogen deficiency, arising in postmenopause, promotes endothelial dysfunction. This study evaluated the effects of aerobic exercise training on endothelial dependent vasodilation of aorta in ovariectomized rats, specifically investigating the role of nitric oxide (NO) and reactive oxygen species (ROS).

Methods

Female Wistar rats ovariectomized (OVX – n=20) or with intact ovary (SHAM – n=20) remained sedentary (OVX and SHAM) or performed aerobic exercise training on a treadmill 5 times a week for a period of 8 weeks (OVX-TRA and SHAM-TRA). In the thoracic aorta the endothelium-dependent and –independent vasodilation was assessed by acetylcholine (ACh) and sodium nitroprusside (SNP), respectively. Certain aortic rings were incubated with L-NAME to assess the NO modulation on the ACh-induced vasodilation. The fluorescence to dihydroethidium in aortic slices and plasma nitrite/nitrate concentrations were measured to evaluate ROS and NO bioavailability, respectively.

Results

ACh-induced vasodilation was reduced in OVX rats as compared SHAM (Rmax: SHAM: 86±3.3 vs. OVX: 57±3.0%, p<0.01). Training prevented this response in OVX-TRA (Rmax: OVX-TRA: 88±2.0%, p<0.01), while did not change it in SHAM-TRA (Rmax: SHAM-TRA: 80±2.2%, p<0.01). The L-NAME incubation abolished the differences in ACh-induced relaxation among groups. SNP-induced vasodilation was not different among groups. OVX reduced nitrite/nitrate plasma concentrations and increased ROS in aortic slices, training as effective to restore these parameters to the SHAM levels.

Conclusions

Exercise training, even in estrogen deficiency conditions, is able to improve endothelial dependent vasodilation in rat aorta via enhanced NO bioavailability and reduced ROS levels.  相似文献   

20.
This study examines the effects of Candida albicans on acethylcholine-induced, endothelium-dependent relaxation of thoracic aorta of rabbits, precontracted by phenylephrine (10(-7) M). Isolated vessel rings were incubated with C. albicans, Saccharomyces cerevisiae, or their mannans, and endothelium-dependent relaxation was measured by the induction of acethylcholine. Endothelium-dependent relaxation remained unaffected after 3 hours by either C. albicans or S. cerevisiae, or their mannans. After 24 hours, however, incubation with C. albicans had completely abolished relaxation, whereas relaxation was decreased by mannan of C. albicans and continued unaffected by S. cerevisiae. In contrast, no change was registered with a 24 hours incubation of C. Albicans in a sodium nitroprusside-induced, endothelium-independent, vascular smooth muscle relaxation. Microscopical investigation of the morphological structure of vessel walls revealed penetration of C. albicans on the intimal surface after 3 hours incubation and infiltration of the yeast through the vessel wall after 24 hours. No changes in vessel morphology occurred after 3 or 24 hours with S. cerevisiae or the mannan of C. albicans. These results show the ability of C. albicans to inhibit endothelium-dependent, but not endothelium-independent, relaxation of vascular smooth muscle and may have important implications for functional damage to endothelial cells and the regulation of vessel tone and blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号