首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inwardly rectifying potassium channel (Kir), Kir4.1 mediates spatial K+-buffering in the CNS. In this process the channel is potentially exposed to a large range of extracellular K+ concentrations ([K+]o). We found that Kir4.1 is regulated by K+o. Increased [K+]o leads to a slow (mins) increase in the whole-cell currents of Xenopus oocytes expressing Kir4.1. Conversely, removing K+ from the bath solution results in a slow decrease of the currents. This regulation is not coupled to the pHi-sensitive gate of the channel, nor does it require the presence of K67, a residue necessary for K+o-dependent regulation of Kir1.1. The voltage-dependent blockers Cs+ and Ba2+ substitute for K+ and prevent deactivation of the channel in the absence of K+o. Cs+ blocks and regulates the channel with similar affinity, consistent with the regulatory sites being in the selectivity-filter of the channel. Although both Rb+ and NH4+ permeate Kir4.1, only Rb+ is able to regulate the channel. We conclude that Kir4.1 is regulated by ions interacting with specific sites in the selectivity filter. Using a kinetic model of the permeation process we show the plausibility of the channel’s sensing the extracellular ionic environment through changes in the selectivity occupancy pattern, and that it is feasible for an ion with the selectivity properties of NH4+ to permeate the channel without inducing these changes.  相似文献   

2.
The activation by abscisic acid (ABA) of current through outward-rectifying K+ channels and its dependence on cytoplasmic pH (pHi) was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled and H+-selective microelectrodes to record membrane potentials and pHi during exposures to ABA and the weak acid butyrate. Potassium channel currents were monitored under voltage clamp and, in some experiments, guard cells were loaded with pH buffers by iontophoresis to suppress changes in pHi. Following impalements, stable pHi values ranged between 7.53 and 7.81 (7.67±0.04, n = 17). On adding 20 M ABA, pHi rose over periods of 5–8 min to values 0.27±0.03 pH units above the pHi before ABA addition, and declined slowly thereafter. Concurrent voltage-clamp measurements showed a parallel rise in the outward-rectifying K+ channel current (IK, out) and, once evoked, both pHi and IK, out responses were unaffected by ABA washout. Acid loads, imposed with external butyrate, abolished the ABA-evoked rise in IK, out. Butyrate concentrations of 10 and 30 mM (pH0 6.1) caused pHi to fall to values near 7.0 and below, both before and after adding ABA, consistent with a cytoplasmic buffer capacity of 128±12 mM per pH unit (n = 10) near neutrality. Butyrate washout was characterised by an appreciable alkaline overshoot in pHi and concomitant swell in the steady-state conductance of IK, out. The rise in pHi and iK, out in ABA were also virtually eliminated when guard cells were first loaded with pH buffers to raise the cytoplasmic buffer capacity four- to sixfold; however, buffer loading was without appreciable effect on the ABA-evoked inactivation of a second, inward-rectifying class of K+ channels (IK, in). The pHi dependence of IK, out was consistent with a cooperative binding of at least 2H+ (apparent pKa = 8.3) to achieve a voltage-independent block of the channel. These results establish a causal link previously implicated between cytoplasmic alkalinisation and the activation of IK, out in ABA and, thus, affirm a role for H+ in signalling and transport control in plants distinct from its function as a substrate in H+-coupled transport. Additional evidence implicates a coordinate control of IK, in by cytoplasmic-free [Ca2+] and pHi.Abbreviations ABA abscisic acid - [Ca2+]i cytoplasmic free [Ca2+]i - EK K+ equilibrium potential - IK, out, IK, in outward-, inward-rectifying K+ channel (current) - I-V current-voltage (relation) - Mes 2-(N-morpholino)ethanesulfonic acid - pHi cytoplasmic pH - Tes 2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-amino}ethanesulfonic acid - Vm membrane potential We are grateful to G. Thiel (Pflanzenphysiologisches Institut, Universität Göttingen, Germany) for helpful discussions. This work was possible with equipment grants-in-aid from the Gatsby Charitable Foundation, the Royal Society and the University of London Central Research Fund. F.A. holds a Sainsbury Studentship.  相似文献   

3.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

4.
Summary Membrane-permeant weak acids and bases, when applied to the bath, modulate the resting membrane potential and the glucose-induced electrical activity of pancreatic B cells, as well as their insulin secretion. These substances alter the activity of a metabolite-regulated. ATP-sensitive K+ channel which underlies the B-cell resting potential. We now present several lines of evidence indicating that the channel may be directly gated by pH i . (1) The time course of K+(ATP) channel activity during exposure to and washout of NH4Cl under a variety of experimental conditions, including alteration of the electrochemical gradient for NH4Cl entry and inhibition of the Na o + H i + exchanger, resembles the time course of pH i measured in other cell types that have been similarly treated. (2) Increasing pH o over the range 6.25–7.9 increases K+(ATP) channel activity in cell-attached patches where the cell surface exposed to the bath has been permeabilized to H+ by the application of the K+/H+ exchanger nigericin. (3) Increasing pH i over a similar range produces similar effects on K+(ATP) channels in inside-out excised patches exposed to small concentrations of ATP i . The physiological role of pH i in the metabolic gating of this channel remains to be explored.  相似文献   

5.
Inwardly rectifying potassium (Kir) channels are broadly expressed in both excitable and nonexcitable tissues, where they contribute to a wide variety of cellular functions. Numerous studies have established that rectification of Kir channels is not an inherent property of the channel protein itself, but rather reflects strong voltage dependence of channel block by intracellular cations, such as polyamines and Mg2+. Here, we identify a previously unknown mechanism of inward rectification in Kir4.1/Kir5.1 channels in the absence of these endogenous blockers. This novel intrinsic rectification originates from the voltage-dependent behavior of Kir4.1/Kir5.1, which is generated by the flux of potassium ions through the channel pore; the inward K+-flux induces the opening of the gate, whereas the outward flux is unable to maintain the gate open. This gating mechanism powered by the K+-flux is convergent with the gating of PIP2 because, at a saturating concentration, PIP2 greatly reduces the inward rectification. Our findings provide evidence of the coexistence of two rectification mechanisms in Kir4.1/Kir5.1 channels: the classical inward rectification induced by blocking cations and an intrinsic voltage-dependent mechanism generated by the K+-flux gating.  相似文献   

6.
Inward rectifier potassium (Kir) channels act as cellular diodes, allowing unrestricted flow of potassium (K+) into the cell while preventing currents of large magnitude in the outward direction. The rectification mechanism by which this occurs involves a coupling between K+ and intracellular blockers—magnesium (Mg2+) or polyamines—that simultaneously occupy the permeation pathway. In addition to the transmembrane pore, Kirs possess a large cytoplasmic domain (CD) that provides a favorable electronegative environment for cations. Electrophysiological experiments have shown that the CD is a key regulator of both conductance and rectification. In this study, we calculate and compare averaged equilibrium probability densities of K+ and Cl in open-pore models of the CDs of a weak (Kir1.1-ROMK) and a strong (Kir2.1-IRK) rectifier through explicit-solvent molecular-dynamics simulations in ∼1 M KCl. The CD of both channels concentrates K+ ions greater than threefold inside the cytoplasmic pore while IRK shows an additional K+ accumulation region near the cytoplasmic entrance. Simulations carried out with Mg2+ or spermine (SPM4+) show that these ions interact with pore-lining residues, shielding the surface charge and reducing K+ in both channels. The results also show that SPM4+ behaves differently inside these two channels. Although SPM4+ remains inside the CD of ROMK, it diffuses around the entire volume of the pore. In contrast, this polyatomic cation finds long-lived conformational states inside the IRK pore, interacting with residues E224, D259, and E299. The strong rectifier CD is also capable of sequestering an additional SPM4+ at the cytoplasmic entrance near a cluster of negative residues D249, D274, E275, and D276. Although understanding the actual mechanism of rectification blockade will require high-resolution structural information of the blocked state, these simulations provide insight into how sequence variation in the CD can affect the multi-ion distributions that underlie the mechanisms of conduction, rectification affinity, and kinetics.  相似文献   

7.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site.  相似文献   

8.
Single inward rectifier K+ channels were studied in Xenopus laevis embryonic myocytes. We have characterized in detail the channel which is most frequently observed (Kir) although we routinely observe three other smaller current levels with the properties of inward rectifier K+ channels (Kir(0.3), Kir(0.5) and Kir(0.7)). For Kir, slope conductances of inward currents were 10.3, 20.3, and 27.9 pS, in 60, 120 and 200 mM [K+] o respectively. Extracellular Ba2+ blocked the normally high channel activity in a concentration-dependent manner (K A = 7.8 μm, −90 mV). In whole-cell recordings of inward rectifier K+ current, marked voltage dependence of Ba2+ block over the physiological range of potentials was observed. We also examined current rectification. Following step depolarizations to voltages positive to E K , outward currents through Kir channels were not observed even when the cytoplasmic face of excised patches were exposed to Mg2+-free solution at pH 9.1. This was probably also true for Kir(0.3), Kir(0.5) and Kir(0.7) channels. We then examined the possibility of modulation of Kir channel activity and found neither ATP nor GTP-γS had any effect on Kir channel activity when added to the solution perfusing the cytoplasmic face of a patch. Kinetic analysis revealed Kir channels with a single open state (mean dwell time 72 msec) and two closed states (time constants 1.4, 79 msec). These results suggest that the native Kir channels of Xenopus myocytes have similar properties to the cloned strong inward rectifier K+ channels, in terms of conductance, kinetics and barium block but does show some differences in the effects of modulators of channel activity. Furthermore, skeletal muscle may contain either different inward rectifier channels or a single-channel type which can exist in stable subconductance states. Received: 16 September 1996/Revised: 14 March 1997  相似文献   

9.
Elevated osmolarity is known to inhibit secretion from a wide range of cells including bovine adrenal chromaffin cells. The mechanism of this inhibition is unclear but the elevated osmolarity has been proposed to oppose an osmotic driving force involved in exocytotic fusion. Using the fluorescent indicators quenel and fura2, we monitored the effect of elevated osmolarity on cytoplasmic pH (pHi) and cytoplasmic free Ca2+ ([Ca2+]i). Elevated osmolarity increased both pHi and [Ca2+]i, but had no effect on the [Ca2+]i rise elicited by either K+ or nicotine. Elevating pHi with NH4Cl was shown to inhibit secretion from chromaffin cells. The elevation of pHi by hyperosmolar solutions is proposed as one of the mechanisms by which elevated osmolarity inhibits secretion.  相似文献   

10.
The effects of D-glucose, D-glyceraldehyde, glibenclamide, D-600, NH 4 + and high concentrations of K+ on cytoplasmic pH (pH i ) were investigated in dispersed and cultured pancreatic -cells fromob/ob mice. The cytoplasmic pH was measured with the fluorescent H+-indicator quene 1. The average pH i value in resting -cells was 6.71. Addition of 20 mM of the physiological stimulus D-glucose increased pH i with 0.05 units. Both glibenclamide and high concentrations of K+ decreased pH i . The latter effects were completely reversed by D-600, supporting the notion that free cytoplasmic Ca2+ can be involved in the regulation of pH i . In contrast to D-glucose, 10mM of D-glyceraldehyde decreased pH i by 0.09 units, an effect persisting even in the presence of D-600. From the present study it is evident that D-glyceraldehyde and D-glucose have opposite effects on pH i in pancreatic -cells.  相似文献   

11.
Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K+ currents in human sperm (IKSper) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca2+, K+, Cl, and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K+]i, [Cl]i, and pHi, but a decrease in [Ca2+]i. Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K+]i, [Cl]i, and pHi, and the decrease in [Ca2+]i were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.  相似文献   

12.
Extracellular acidification and reduction of extracellular K+ are known to decrease the currents of some voltage-gated potassium channels. Although the macroscopic conductance of WT hKv1.5 channels is not very sensitive to [K+]o at pH 7.4, it is very sensitive to [K+]o at pH 6.4, and in the mutant, H463G, the removal of K+ o virtually eliminates the current at pH 7.4. We investigated the mechanism of current regulation by K+ o in the Kv1.5 H463G mutant channel at pH 7.4 and the wild-type channel at pH 6.4 by taking advantage of Na+ permeation through inactivated channels. Although the H463G currents were abolished in zero [K+]o, robust Na+ tail currents through inactivated channels were observed. The appearnnce of H463G Na+ currents with a slow rising phase on repolarization after a very brief depolarization (2 ms) suggests that channels could activate directly from closed-inactivated states. In wild-type channels, when intracellular K+ was replaced by NMG+ and the inward Na+ current was recorded, addition of 1 mM K+ prevented inactivation, but changing pH from 7.4 to 6.4 reversed this action. The data support the idea that C-type inactivation mediated at R487 in Kv1.5 channels is influenced by H463 in the outer pore. We conclude that both acidification and reduction of [K+]o inhibit Kv1.5 channels through a common mechananism (i.e., by increasing channel inactivation, which occurs in the resting state or develops very rapidly after activation).  相似文献   

13.
Outward currents through inward rectifier Kir2.1 channels play crucial roles in controlling the electrical properties of excitable cells. Extracellular monovalent and divalent cations have been shown to reduce outward K+ conductance. In the present study, we examined whether spermine, with four positive charges, also inhibits outward Kir2.1 currents. We found that extracellular spermine inhibits steady-state outward Kir2.1 currents, an effect that increases as the voltage becomes more depolarizing, similar to that observed for intracellular spermine. However, several lines of evidence suggest that extracellular spermine does not inhibit outward currents by entering the cytoplasmic pore. Site-directed mutagenesis studies support that extracellular spermine directly interacts with the extracellular domain. In addition, we found that the voltage-dependent decay of outward Kir2.1 currents was necessary for inhibition by extracellular spermine. Further, a region at or near the selectivity filter and the cytoplasmic pore are involved in the voltage-dependent decay and thus in the inhibition of outward currents by extracellular spermine. Taken together, the data suggest that extracellular spermine bound to the mouth of the extracellular pore may induce an allosteric effect on voltage-dependent decay of outward currents, a process in which a region in the vicinity of the selectivity filter and cytoplasmic pore are involved. This study reveals that the extracellular pore domain, the selectivity filter and the cytoplasmic pore are in communication and this coupling is involved in modulating K+ conduction in the Kir2.1 channel.  相似文献   

14.
Summary Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide.We tested whether changes in intracellular pH (pH i ) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH i and doubledgK+.Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS.Aldosterone had no effect on the conductance or open probability (P o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P o was increased by raising pH.These results indicate that prolonged aldosterone treatment raises pH i and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH i and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney. Present address: Department of Physiology, The University of Leeds, Leeds, LS2 9NQ, England  相似文献   

15.
K+ are selectively coordinated in the selectivity filter and concerted K+ and water movements in this region ensure high conduction rates in K+ channels. In channels with long pores many K+ binding sites are located intracellular to the selectivity filter (inner vestibule), but their contribution to permeation has not been well studied. We investigated this phenomenon by slowing the ion permeation process via blocking inwardly rectifying Kir2.1 channels with Ba2+ in the selectivity filter and observing the effect of K+ in the inner vestibule on Ba2+ exit. The dose-response effect of the intracellular K+ concentration ([K+]i) on Ba2+ exit was recorded with and without intracellular polyamines, which compete with K+ for binding sites. Ba2+ exit was facilitated by the cooperative binding of at least three K+. Site-directed mutagenesis studies suggest that K+ interacting with Ba2+ bound in the selectivity filter were located in the region between selectivity filter and cytoplasmic pore, i.e. the water cavity and G-loop. One of the K+ binding sites was located at residue D172 and another was possibly at M301. This study provides functional evidence for the three K+ binding sites in the inner vestibule previously identified by crystal structure study.  相似文献   

16.
Potassium channels selectively conduct K+ ions across cell membranes and have key roles in cell excitability. Their opening and closing can be spontaneous or controlled by membrane voltage or ligand binding. We used Ba2+ as a probe to determine the location of the ligand-sensitive gate in an inwardly rectifying K+ channel (Kir6.2). To a K+ channel, Ba2+ and K+ are of similar sizes, but Ba2+ blocks the pore by binding within the selectivity filter. We found that internal Ba2+ could still access its binding site when the channel was shut, which indicates that the ligand-sensitive gate lies above the Ba2+-block site, and thus within or above the selectivity filter. This is in marked contrast to the voltage-dependent gate of KV channels, which is located at the intracellular mouth of the pore.  相似文献   

17.
ATP-sensitive K+ (KATP) channel mutations have been identified in individuals with dilated cardiomyopathy and overt heart failure. Here, a common E23K functional polymorphism in the Kir6.2 channel pore versus cardiac phenotype was studied in a cross-sectional community-based cohort (n = 2,031). The KK genotype was associated with greater left ventricular size among subjects with increased stress load due to hypertension. These findings implicate Kir6.2 K23 as a risk factor for adverse subclinical myocardial remodeling, and underscore the significance of cardiac KATP channels within the population.  相似文献   

18.
We investigated the effects of changing extracellular K+ concentrations on block of the weak inward-rectifier K+ channel Kir1.1b (ROMK2) by the three intracellular cations Mg2+, Na+, and TEA+. Single-channel currents were monitored in inside-out patches made from Xenopus laevis oocytes expressing the channels. With 110 mM K+ in the inside (cytoplasmic) solution and 11 mM K+ in the outside (extracellular) solution, these three cations blocked K+ currents with a range of apparent affinities (Ki (0) = 1.6 mM for Mg2+, 160 mM for Na+, and 1.8 mM for TEA+) but with similar voltage dependence (zδ = 0.58 for Mg2+, 0.71 for Na+, and 0.61 for TEA+) despite having different valences. When external K+ was increased to 110 mM, the apparent affinity of all three blockers was decreased approximately threefold with no significant change in the voltage dependence of block. The possibility that the transmembrane cavity is the site of block was explored by making mutations at the N152 residue, a position previously shown to affect rectification in Kir channels. N152D increased the affinity for block by Mg2+ but not for Na+ or TEA+. In contrast, the N152Y mutation increased the affinity for block by TEA+ but not for Na+ or Mg2+. Replacing the C terminus of the channel with that of the strong inward-rectifier Kir2.1 increased the affinity of block by Mg2+ but had a small effect on that by Na+. TEA+ block was enhanced and had a larger voltage dependence. We used an eight-state kinetic model to simulate these results. The effects of voltage and external K+ could be explained by a model in which the blockers occupy a site, presumably in the transmembrane cavity, at a position that is largely unaffected by changes in the electric field. The effects of voltage and extracellular K+ are explained by shifts in the occupancy of sites within the selectivity filter by K+ ions.  相似文献   

19.
The NaChBac prokaryotic sodium channel appears to be a descendent of an evolutionary link between voltage-gated KV and CaV channels. Like KV channels, four identical six-transmembrane subunits comprise the NaChBac channel, but its selectivity filter possesses a signature sequence of eukaryotic CaV channels. We developed structural models of the NaChBac channel in closed and open conformations, using K+-channel crystal structures as initial templates. Our models were also consistent with numerous experimental results and modeling criteria. This study concerns the pore domain. The major differences between our models and K+ crystal structures involve the latter portion of the selectivity filter and the bend region in S6 of the open conformation. These NaChBac models may serve as a stepping stone between K+ channels of known structure and NaV, CaV, and TRP channels of unknown structure.  相似文献   

20.
Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (~85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号