首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Structure and evolution of the bovine prothrombin gene   总被引:6,自引:0,他引:6  
The cloned bovine prothrombin gene has been characterized by partial DNA sequence analysis, including the 5' and 3' flanking sequences and all the intron-exon junctions. The gene is approximately 15.4 x 10(3) base-pairs in length and comprises 14 exons interrupted by 13 introns. The exons coding for the prepro-leader peptide and the gamma-carboxyglutamic acid-containing region are similar in organization to the corresponding exons in the factor IX and protein C genes. This region has probably evolved as a result of recent gene duplication and exon shuffling events. The exons coding for the kringles and the serine protease region of the prothrombin gene are different in organization from the homologous regions in other genes, suggesting that introns have been inserted into these regions after the initial gene duplication events.  相似文献   

3.
Ancient duplications of the human proglucagon gene   总被引:5,自引:0,他引:5  
Irwin DM 《Genomics》2002,79(5):741-746
The human proglucagon gene (GCG) is encoded within a finished 576-kb DNA sequence generated by the Human Genome Project. GCG is flanked by 18 kb and 65 kb of DNA, 5' and 3', respectively, that do not encode genes. The genomic sequence that includes GCG was found to have a long history of gene duplication events. Some members of the glucagon-like family of genes, GCG on chromosome 2 and GIP on chromosome 17, may be products of ancient genome duplications on the early vertebrate lineage. A large genomic tandem duplication event that included DPP4-like and GCG genes occurred before the amphibian-mammal divergence, but one of the duplicated copies of GCG has been lost on the human lineage. Recently, a processed pseudogene of the X-chromosome-linked gene TIMM8A was inserted downstream of GCG. Some ancient duplicates of GCG may retain physiological functions in other vertebrates.  相似文献   

4.
5.
Abstract A 5.7-kb Eco RI DNA fragment has been isolated from Bacillus sp. strain N-4 chromosome DNA. This fragment contained both the pNK1-encoded cellulase ( celB ) gene and the pNK2-encoded cellulase ( celA ) gene which were highly homologous [13]. These results demonstrate the tandem location of these genes on the chromosomal DNA. The homologous sequence, which may play an important role for the gene duplication, were observed 5' upstream of the celA gene, between the celA and celB genes, and 3' downstream from the celB gene.  相似文献   

6.
7.
The primary sequence of the GC-rich half of the repeating unit in X. laevis 5S DNA has been determined in both a single plasmid-cloned repeating unit and in the total population of repeatig units. The GC-rich half of the repeating unit contains a single long duplication of 174 nucleotides. The duplicated segment commences 73 nucleotides preceding the 5' end of the gene and terminates at nucleotide 101 of the gene. The duplicated portion of the gene, termed the pseudogene, differs by 10 nucleotides from the corresponding portion of the gene, and the remaining duplicated sequence of 73 nucleotides differs by 13 nucleotides. The plasmid-cloned repeating unit differs from the dominant sequence in the total population repeating units by 6 nucleotides in the GC-rich region. Evidence is provided that most of the CpG dinucleotides in 5S DNA are at least partially methylated.  相似文献   

8.
In order to understand the coordinate regulation between the alpha-like and beta-like globins during the developmental switches in hemoglobin synthesis, we have studied the rabbit alpha-like globin gene family. A cluster of six linked genes arranged 5'-zeta 1-alpha 1-theta 1-zeta 2-zeta 3-theta 2-3' has been isolated as a set of overlapping clones from a library of rabbit genomic DNA. Blot-hybridization analysis of genomic DNA not only confirms this linkage arrangement but also reveals the presence of additional zeta and theta genes. We propose that this gene cluster was generated by a block duplication of a set of alpha-like genes; the proposed duplication unit is zeta-zeta-alpha-theta. Further duplications of a zeta-zeta-theta set are also proposed to have occurred. As expected for a duplicated locus, the rabbit alpha-like gene cluster contains long blocks of internal homology. The Z homology block is about 7.2 kilobase pairs long and contains the zeta genes; the T homology block is about 4.7 kilobase pairs long and contains a theta gene. Surprisingly, both Z and T homology blocks are flanked by a common junction sequence (J) which contains a region very similar to the 3'-untranslated sequence of an alpha-globin gene. Analysis of the J sequences suggests a recombination mechanism by which the alpha gene could have been deleted from the second set of genes in the cluster (zeta 2-zeta 3-theta 2). The relationships among the genes in characterized alpha-like gene clusters in mammals are summarized. The rabbit gene cluster differs from those of other mammals principally in the loss of a gene orthologous to the human psi alpha 1 and in the block duplication of the zeta-zeta-alpha-theta gene set.  相似文献   

9.
New genes arise through duplication and modification of DNA sequences on a range of scales: single gene duplication, duplication of large chromosomal fragments and whole-genome duplication. Each duplication mechanism has specific characteristics that influence the fate of the resulting duplicates, such as the size of the duplicated fragment, the potential for dosage imbalance, the preservation or disruption of regulatory control and genomic context. The ability to diagnose or identify the mechanism that produced a pair of paralogs has the potential to increase our ability to reconstruct evolutionary history, to understand the processes that govern genome evolution and to make functional predictions based on paralogy. The recent availability of large amounts of whole-genome sequence, often from several closely related species, has stimulated a wealth of new computational methods to diagnose gene duplications.  相似文献   

10.
11.
Summary The glycerol-3-phosphate dehydrogenase (GPDH, E. C. 1.1.1.8) gene ofDrosophila melanogaster contains a tandem duplication of a 4.5-kb-long DNA fragment. Survey of theGpdh gene region by the Southern blot analysis revealed the following features of this gene duplication: (1) The duplication was not observed in chromosome lines that carryIn(2L)t, a cosmopolitan chromosomal inversion in this species. The duplication and the inversion are in linkage disequilibrium. (2) The duplication is polymorphic in the Japan and US natural populations examined. Its frequency is 0.26 on an average inIn(2L)t-free chromosomes. (3) Triplication is absent or has not become frequent in the populations surveyed. Possible evolutionary factors of this duplication polymorphism are discussed.  相似文献   

12.
The human adult alpha globin genes, alpha 2 and alpha 1, are contained within two tandemly arranged duplication units. Each unit spans 4 kb of DNA, and contains three homology blocks (X, Y, Z) separated by non-homologous sequences. Segmental DNA recombination processes between the two units have resulted in high frequencies of two types of deletions in certain human populations, each deletion removing one alpha globin gene from chromosome 16, (alpha-thalassemia 2). In order to study the molecular mechanisms of alpha-thalassemia 2, and of homologous DNA recombination in general in mammalian cells, we have reconstructed these two alpha-thalassemia 2 genotypes in monkey cells. The two duplication units have been cloned in an SV40 origin-containing vector, and transfected into COS 7 cells. Newly replicated plasmid DNA was isolated and analyzed by Southern blot hybridization. Homologous DNA recombination occurs with high frequencies (10-20% per kb of homology), and this generates both types of alpha-thalassemia 2 deletions on the episomes in the monkey cells. Removal of the 5' end of either one, or both, of the X blocks prior to DNA transfection affects the relative frequencies of the two alpha-thalassemia 2 genotypes in a novel way. We consider and discuss these results in terms of several alternative models. Our data suggest the existence of hot spot(s) for initiation of homologous DNA recombination, or recombination promoting element(s), in a specific region of the human adult alpha globin locus. A DNA sequence that defines the boundaries of the two duplication units, and has been implicated in the initiation of gene conversion of the two X blocks, is contained within this region.  相似文献   

13.
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.  相似文献   

14.
N Takahashi  S Ueda  M Obata  T Nikaido  S Nakai  T Honjo 《Cell》1982,29(2):671-679
We have cloned five human immunoglobulin gamma genes from a fetal liver gene library. Four of them encode the known human immunoglobulin gamma chains gamma 1, gamma 2, gamma 3 and gamma 4. A fifth gamma gene seems to be a pseudogene. Nucleotide sequence determination demonstrates that the gamma 3 gene contains four separate hinge exons. Comparison of these hinge exons with those of the other gamma genes indicates that the first hinge exon is homologous to that of the pseudogene, and that the other three hinge exons are homologous to that of the gamma 1 gene, suggesting that the gamma 3 gene ancestor is a hybrid gene created by unequal crossing-over between the ancestral gamma 1 and psi gamma genes. Amplification of the gamma 1-type hinge exon probably followed to complete the gamma 3 gene. This hypothesis inevitably postulates the gene order 5'-gamma 1-gamma 3-psi gamma-3'. Cloning of overlapping chromosomal segments demonstrates that the gamma 2 gene is located 19 kb 5' to the gamma 4 gene. These analyses indicate that the human gamma-gene family has evolved by several types of DNA rearrangemet, including duplication of a complete gene; duplication of a hinge exon; and reassortment of exons by unequal cross-over between two adjacent genes.  相似文献   

15.
The occurence of members of mos oncogene family in the vertebrates genome has been studied with the help of highly labeled single-stranded DNA probes. These included subgenic v-mos clones as well as the unique sequence--specific recombinants from mos-related human locus gp5 and the K51 locus from rat genome. The probe from gp5 (mos pseudogene) interacts only with DNA of primates and of rodents. On the other hand, mos gene and the gene from K51 locus are present in all vertberates tested. Recent duplication of the main mos gene in Artiodactyla and Perissodactyla orders of mammals was identified. The persistence of K51 and mos genes during evolution indicates their importance. The segregation of three mos-related genes in human-hamster hybrids points to their location on different human chromosomes.  相似文献   

16.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

17.
Insertion sequence (IS) regions have been identified previously as a cause of strongly polar mutations in Escherichia coli and several bacteriophages. The present experiments indicate that genetically characterized IS regions occur on bacterial plasmid deoxyribonucleic acid (DNA) as both direct and inverted DNA sequence duplications. The DNA insertion which has been shown previously (Sharp et al., 1973) to control expression of tetracycline resistance in the R6-5 plasmid, and which occurs as directly and inversely repeated DNA sequences adjacent to the region believed to contain the tetracycline resistance gene, has been identified as IS3. A second genetically characterized insertion sequence (IS1) has been identified as a direct DNA duplication occurring at both junctions of the resistance transfer factor and R-determinant components of R6-5 and related plasmids. A model is presented for the reversible dissociation of resistance transfer factor and R-determinant components of co-integrate R plasmids at the sites of DNA sequence homology provided by the repeated IS regions.  相似文献   

18.
UBX(泛素调控X因子)蛋白质家族在泛素化相关的过程中起着重要的作用,如细胞周期调控、转录调控、信号转导、发育、胁迫响应、细胞程序性死亡、内吞作用和DNA修复。然而,到目前为止。UBX家族在杨树和葡萄中还没有被研究过。为了更好的弄清这两个植物的UBX家族,我们对UBX的基因结构、染色体位置、基因重复、系统发育关系作了分析。该研究对葡萄和杨树的UBX蛋白质家族作了第一个系统的分析。基因的外显子/内含子结构和蛋白质基序组成在同一个组里相对比较保守。基因重复分析表明.串联重复和片段重复对于杨树和葡萄的UBX基因家族的扩张有一定贡献,基因缺失在UBX基因家族的扩张过程中也发生了作用。本研究为UBX蛋白质功能的研究奠定了基础。  相似文献   

19.
Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.  相似文献   

20.
Duplication/deletion polymorphism 5' - to the human beta globin gene.   总被引:14,自引:3,他引:11       下载免费PDF全文
DNA sequence analysis of the human beta globin locus has identified an array of simple tandem repeated sequences upstream from the beta globin structural gene. Comparison of several cloned human beta globin alleles demonstrated a high frequency of sequence heteromorphism at this site apparently due to duplication or deletion of single units of the repeat array. At least two such duplication/deletion events are necessary to account for the observed variation. No other sequence variation was observed, suggesting that duplication/deletion events within the tandem repeat array may be at least 13 to 14 times more frequent than nucleotide substitutions in the surrounding DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号