首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling on the endocytic pathway   总被引:4,自引:0,他引:4  
Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways.  相似文献   

2.
DeLotto R 《Fly》2011,5(2):141-146
The Toll receptor propagates the ventralizing signal designating dorsal/ventral cell fate in the Drosophila embryo. The application of live-imaging approaches to this classical developmental signaling pathway is yielding some surprising new insights into Toll receptor signaling. In addition to its previously known plasma membrane localization, Toll is present in Rab5+ early endosomes. Dominant, constitutively active forms of Toll preferentially partition into endosomes. Blocking endocytosis locally prevents Toll from signaling suggesting that endocytosis is required for Toll to signal. Augmenting endocytosis increases Toll signaling. Both interventions alter the shape of the Dorsal gradient globally indicating an important role of endocytosis in fixing spatial information for the Dorsal gradient.  相似文献   

3.
Receptor-mediated endocytosis is an integral part of signal transduction as it mediates signal attenuation and provides spatial and temporal dimensions to signaling events. One of the best-studied leucine-rich repeat receptor-like kinases in plants, BRASSINOSTEROID INSENSITIVE 1 (BRI1), perceives its ligand, the brassinosteroid (BR) hormone, at the cell surface and is constitutively endocytosed. However, the importance of endocytosis for BR signaling remains unclear. Here we developed a bioactive, fluorescent BR analog, Alexa Fluor 647-castasterone (AFCS), and visualized the endocytosis of BRI1-AFCS complexes in living Arabidopsis thaliana cells. Impairment of endocytosis dependent on clathrin and the guanine nucleotide exchange factor for ARF GTPases (ARF-GEF) GNOM enhanced BR signaling by retaining active BRI1-ligand complexes at the plasma membrane. Increasing the trans-Golgi network/early endosome pool of BRI1-BR complexes did not affect BR signaling. Our findings provide what is to our knowledge the first visualization of receptor-ligand complexes in plants and reveal clathrin- and ARF-GEF-dependent endocytic regulation of BR signaling from the plasma membrane.  相似文献   

4.
C Davis  P Dube  J B Konopka 《Genetics》1998,148(2):625-635
The alpha-factor pheromone receptor activates a G protein signaling pathway that induces the conjugation of the yeast Saccharomyces cerevisiae. Our previous studies identified AFR1 as a gene that regulates this signaling pathway because overexpression of AFR1 promoted resistance to alpha-factor. AFR1 also showed an interesting genetic relationship with the alpha-factor receptor gene, STE2, suggesting that the receptor is regulated by Afr1p. To investigate the mechanism of this regulation, we tested AFR1 for a role in the two processes that are known to regulate receptor signaling: phosphorylation and down-regulation of ligand-bound receptors by endocytosis. AFR1 overexpression diminished signaling in a strain that lacks the C-terminal phosphorylation sites of the receptor, indicating that AFR1 acts independently of phosphorylation. The effects of AFR1 overexpression were weaker in strains that were defective in receptor endocytosis. However, AFR1 overexpression did not detectably influence receptor endocytosis or the stability of the receptor protein. Instead, gene dosage studies showed that the effects of AFR1 overexpression on signaling were inversely proportional to the number of receptors. These results indicate that AFR1 acts independently of endocytosis, and that the weaker effects of AFR1 in strains that are defective in receptor endocytosis were probably an indirect consequence of their increased receptor number caused by the failure of receptors to undergo ligand-stimulated endocytosis. Analysis of the ligand binding properties of the receptor showed that AFR1 overexpression did not alter the number of cell-surface receptors or the affinity for alpha-factor. Thus, Afr1p prevents alpha-factor receptors from activating G protein signaling by a mechanism that is distinct from other known pathways.  相似文献   

5.
Endocytosis regulates Notch signaling in both signaling and receiving cells. A puzzling observation is that endocytosis of transmembrane ligand by the signaling cells is required for Notch activation in adjacent receiving cells. A key to understanding why signaling depends on ligand endocytosis lies in identifying and understanding the functions of crucial endocytic proteins. One such protein is Epsin, an endocytic factor first identified in vertebrate cells. Here, we show in Drosophila that Auxilin, an endocytic factor that regulates Clathrin dynamics, is also essential for Notch signaling. Auxilin, a co-factor for the ATPase Hsc70, brings Hsc70 to Clathrin cages. Hsc70/Auxilin functions in vesicle scission and also in uncoating Clathrin-coated vesicles. We find that like Epsin, Auxilin is required in Notch signaling cells for ligand internalization and signaling. Results of several experiments suggest that the crucial role of Auxilin in signaling is, at least in part, the generation of free Clathrin. We discuss these observations in the light of current models for the role of Epsin in ligand endocytosis and the role of ligand endocytosis in Notch signaling.  相似文献   

6.
In all transmembrane receptor systems the kinetics of receptor trafficking upon ligand stimulation is maintained in a balance between degradative and recycling pathways in order to keep homeostasis and to strictly control receptor-mediated signaling. Endocytosis is commonly considered as an efficient mechanism of uptake and transport of membrane-associated signaling molecules leading to attenuation of ligand-induced responses. Accumulating evidence, however, shows that signaling from internalized receptors not only continues in endosomal compartments, but that there are also distinct signaling events that require endocytosis. Endocytic organelles form a dynamic network of subcellular compartments, which actively control the timing, amplitude, and specificity of signaling. In this review we provide examples in which signal transduction either requires an active endocytic machinery, or directly originates from various types of endosomes. Based on recent discoveries, we emphasize the close interdependence between signaling and endocytosis, and the physiological relevance of endocytic transport in health and disease.  相似文献   

7.
Signaling of plasma membrane receptors can be regulated by endocytosis at different levels, including receptor internalization, endocytic sorting towards degradation or recycling, and using endosomes as mobile signaling platforms. Increasing number of reports underscore the importance of endocytic mechanisms for signaling of cytokine receptors. In this short review we present both consistent and conflicting data regarding endocytosis and its role in signaling of receptors from the tumor necrosis factor receptor superfamily (TNFRSF) and those for interleukins (ILRs) and interferons (IFNRs). These receptors can be internalized through various endocytic routes and most of them are able to activate downstream pathways from endosomal compartments. Moreover, some of the cytokine receptors clearly require endocytosis for proper signal transduction. Still, the data describing internalization mechanisms and fate of cytokine receptors are often fragmentary and barely address the relation between their endocytosis and signaling. In the light of growing knowledge regarding different mechanisms of endocytosis, extending it to the regulation of cytokine receptor signaling may improve our understanding of the complex and pleiotropic functions of these molecules.  相似文献   

8.
Neuregulin-1 (NRG1) plays an important role in neural development, synapse formation, and synaptic plasticity by activating ErbB receptor tyrosine kinases. Although ligand-induced endocytosis has been shown to be important for many receptor tyrosine kinases, whether NRG1 signaling depends on ErbB endocytosis remains controversial. Here, we provide evidence that ErbB4, a prominent ErbB protein in the brain, becomes internalized in NRG1-stimulated neurons. The induced ErbB4 endocytosis requires its kinase activity. Remarkably, inhibition of ErbB endocytosis attenuates NRG1-induced activation of Erk and Akt in neurons. These observations indicate a role of ErbB endocytosis in NRG1 signaling in neurons.  相似文献   

9.
Regulation of Notch signaling is critical to development and maintenance of most eukaryotic organisms. The Notch receptors and ligands are integral membrane proteins and direct cell-cell interactions are needed to activate signaling. Ligand-expressing cells activate Notch signaling through an unusual mechanism involving Notch proteolysis to release the intracellular domain from the membrane, allowing the Notch receptor to function directly as the downstream signal transducer. In the absence of ligand, the Notch receptor is maintained in an autoinhibited, protease resistant state. Genetic studies suggest that Notch ligands require ubiquitylation, epsin endocytic adaptors and dynamin-dependent endocytosis for signaling activity. Here we discuss potential models and supporting evidence to account for the absolute requirement for ligand endocytosis to activate signaling in Notch cells. Specifically, we focus on a role for ligand-mediated endocytic force to unfold Notch, override the autoinhibited state, and activate proteolysis to direct Notch-specific cellular responses.  相似文献   

10.
11.
Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.  相似文献   

12.
13.
14.
Caveolae are flask-shape membrane invaginations of the plasma membrane that have been implicated in endocytosis, transcytosis, and cell signaling. Recent years have witnessed the resurgence of studies on caveolae because they have been found to be involved in the uptake of some membrane components such as glycosphingolipids and integrins, as well as viruses, bacteria, and bacterial toxins. Accumulating evidence shows that endocytosis mediated by caveolae requires unique structural and signaling machinery (caveolin-1, src kinase), which indicates that caveolar endocytosis occurs through a mechanism which is distinct from other forms of lipid microdomain-associated, clathrin-independent endocytosis. Furthermore, a balance of glycosphingolipids, cholesterol, and caveolin-1 has been shown to be important in regulating caveolae endocytosis.  相似文献   

15.
Pincher,a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes   总被引:16,自引:0,他引:16  
A central tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential.  相似文献   

16.
Caveolar endocytosis is an important mechanism for the uptake of certain pathogens and toxins and also plays a role in the internalization of some plasma membrane (PM) lipids and proteins. However, the regulation of caveolar endocytosis is not well understood. We previously demonstrated that caveolar endocytosis and beta1-integrin signaling are stimulated by exogenous glycosphingolipids (GSLs). In this study, we show that a synthetic GSL with nonnatural stereochemistry, beta-D-lactosyl-N-octanoyl-L-threo-sphingosine, (1) selectively inhibits caveolar endocytosis and SV40 virus infection, (2) blocks the clustering of lipids and proteins into GSLs and cholesterol-enriched microdomains (rafts) at the PM, and (3) inhibits beta1-integrin activation and downstream signaling. Finally, we show that small interfering RNA knockdown of beta1 integrin in human skin fibroblasts blocks caveolar endocytosis and the stimulation of signaling by a GSL with natural stereochemistry. These experiments identify a new compound that can interfere with biological processes by inhibiting microdomain formation and also identify beta1 integrin as a potential mediator of signaling by GSLs.  相似文献   

17.
Ding Q  Wang Z  Chen Y 《Cell research》2009,19(3):317-327
In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical roles in the pathogenesis of diabetes and metabolic syndrome. Here, we analyzed the endocytosis of adiponectin and adiponectin receptor 1 (AdipoR1) and found that they are both internalized into transferrin-positive compartments that follow similar traffic routes. Blocking clathrin-mediated endocytosis by expressing Eps15 mutants or depleting K(+) trapped AdipoR1 at the plasma membrane, and K(+) depletion abolished adiponectin internalization, indicating that the endocytosis of AdipoR1 and adiponectin is clathrin-dependent. Depletion of K(+) and overexpression of Eps15 mutants enhance adiponectin-stimulated AMP-activated protein kinase phosphorylation, suggesting that the endocytosis of AdipoR1 might downregulate adiponectin signaling. In addition, AdipoR1 colocalizes with the small GTPase Rab5, and a dominant negative Rab5 abrogates AdipoR1 endocytosis. These data indicate that AdipoR1 is internalized through a clathrin- and Rab5-dependent pathway and that endocytosis may play a role in the regulation of adiponectin signaling.  相似文献   

18.
Caveolae are flask-shape membrane invaginations of the plasma membrane that have been implicated in endocytosis, transcytosis, and cell signaling. Recent years have witnessed the resurgence of studies on caveolae because they have been found to be involved in the uptake of some membrane components such as glycosphingolipids and integrins, as well as viruses, bacteria, and bacterial toxins. Accumulating evidence shows that endocytosis mediated by caveolae requires unique structural and signaling machinery (caveolin-1, src kinase), which indicates that caveolar endocytosis occurs through a mechanism which is distinct from other forms of lipid microdomain-associated, clathrin-independent endocytosis. Furthermore, a balance of glycosphingolipids, cholesterol, and caveolin-1 has been shown to be important in regulating caveolae endocytosis.  相似文献   

19.
Vav family GEFs link activated Ephs to endocytosis and axon guidance   总被引:8,自引:0,他引:8  
Ephrin signaling through Eph receptor tyrosine kinases can promote attraction or repulsion of axonal growth cones during development. However, the mechanisms that determine whether Eph signaling promotes attraction or repulsion are not known. We show here that the Rho family GEF Vav2 plays a key role in this process. We find that, during axon guidance, ephrin binding to Ephs triggers Vav-dependent endocytosis of the ligand-receptor complex, thus converting an initially adhesive interaction into a repulsive event. In the absence of Vav proteins, ephrin-Eph endocytosis is blocked, leading to defects in growth cone collapse in vitro and significant defects in the ipsilateral retinogeniculate projections in vivo. These findings suggest an important role for Vav family GEFs as regulators of ligand-receptor endocytosis and determinants of repulsive signaling during axon guidance.  相似文献   

20.
While endocytosis attenuates signals from plasma membrane receptors, recent studies suggest that endocytosis also serves as a platform for the compartmentalized activation of cellular signaling pathways. Intersectin (ITSN) is a multidomain scaffolding protein that regulates endocytosis and has the potential to regulate various biochemical pathways through its multiple, modular domains. To address the biological importance of ITSN in regulating cellular signaling pathways versus in endocytosis, we have stably silenced ITSN expression in neuronal cells by using short hairpin RNAs. Decreasing ITSN expression dramatically increased apoptosis in both neuroblastoma cells and primary cortical neurons. Surprisingly, the loss of ITSN did not lead to major defects in the endocytic pathway. Yeast two-hybrid analysis identified class II phosphoinositide 3'-kinase C2beta (PI3K-C2beta) as an ITSN binding protein, suggesting that ITSN may regulate a PI3K-C2beta-AKT survival pathway. ITSN associated with PI3K-C2beta on a subset of endomembrane vesicles and enhanced both basal and growth factor-stimulated PI3K-C2beta activity, resulting in AKT activation. The use of pharmacological inhibitors, dominant negatives, and rescue experiments revealed that PI3K-C2beta and AKT were epistatic to ITSN. This study represents the first demonstration that ITSN, independent of its role in endocytosis, regulates a critical cellular signaling pathway necessary for cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号