首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THE REGENERATION OF CILIA IN PARTIALLY DECILIATED TETRAHYMENA   总被引:7,自引:4,他引:3       下载免费PDF全文
Partial deciliation of Tetrahymena resulted in cells losing 75% of their cilia, with the balance being paralyzed. The paralyzed cilia are resorbed in the first 20 min after partial deciliation, and regeneration of cilia begins before resorption is completed. Inhibition of protein synthesis with cycloheximide does not inhibit ciliary resorption or regeneration, whereas vinblastine sulfate inhibits regeneration but not resorption. Inhibition of regeneration occurs in completely deciliated cells when they are treated with cyclohexmimide or vinblastine sulfate. It is concluded that the resorbing cilia contribute materials which allow regeneration to occur in the absence of protein synthesis. The volume of cilia regenerated in the presence of cycloheximide in partially deciliated cells is greater than the ciliary volume which is resorbed. This suggests the Tetrahymena cells have a pool of ciliary precursors. This pool does not contribute materials for regeneration in completely deciliated cells which are treated with cycloheximide. It is concluded that resorbing cilia in partially deciliated cells contribute materials which potentiate assembly of cilia from the pool of precursors.  相似文献   

2.
Microtubule protein of >95% purity has been isolated by self-assembly from concentrated cell extracts of myxamoebae of Physarum polycephalum. Ninety-eight percent of the amoebal microtubule protein was tubulin. Both a and β subunits of amoebal tubulin were different from neurotubulin α and β subunits, but very similar to those of Tetrahymena ciliary tubulin. The non-tubulin components, which co-purified with tubulin through three assembly cycles, were essential to microtubule formation and contained several polypeptides including some of apparent molecular weights 49000, 57000 and 59000. Purified amoebal microtubule protein formed microtubules on warming in the absence of glycerol which were cold- and Ca2+-labile. In vitro, microtubule assembly was inhibited by vinblastine, benzimidazole derivatives and griseofulvin, but not by 10?4 M colchicine. Amoebal tubulin had a much lower affinity than neurotubulin for colchicine.  相似文献   

3.
When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.  相似文献   

4.
The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.  相似文献   

5.
Basal bodies nucleate, anchor, and organize cilia. As the anchor for motile cilia, basal bodies must be resistant to the forces directed toward the cell as a consequence of ciliary beating. The molecules and generalized mechanisms that contribute to the maintenance of basal bodies remain to be discovered. Bld10/Cep135 is a basal body outer cartwheel domain protein that has established roles in the assembly of nascent basal bodies. We find that Bld10 protein first incorporates stably at basal bodies early during new assembly. Bld10 protein continues to accumulate at basal bodies after assembly, and we hypothesize that the full complement of Bld10 is required to stabilize basal bodies. We identify a novel mechanism for Bld10/Cep135 in basal body maintenance so that basal bodies can withstand the forces produced by motile cilia. Bld10 stabilizes basal bodies by promoting the stability of the A- and C-tubules of the basal body triplet microtubules and by properly positioning the triplet microtubule blades. The forces generated by ciliary beating promote basal body disassembly in bld10Δ cells. Thus Bld10/Cep135 acts to maintain the structural integrity of basal bodies against the forces of ciliary beating in addition to its separable role in basal body assembly.  相似文献   

6.
Log growth Tetrahymena pyriformis GL were deciliated by means of a calcium pulse and allowed to regenerate their cilia in a non-nutrient recovery medium. Polyribosome profiles show only small amounts of polysomes up to 30 min after suspension in recovery medium. After this time the number of polysomes increases continuously as protein synthetic activity and motility are recovered. Labeling of whole cells with l-[35S]methionine and comparison of the resulting electrophoretic patterns reveals a marked induction of tubulin synthesis as cilia regeneration proceeds. At its peak, tubulin accounts for 7–10% of the incorporated label but this peak occurs 35 min after the cells become greater than 90% motile and about 25 min after the cilia reach full length. These results are discussed with respect to the regulatory mechanism of tubulin induction and induction of tubulin synthesis in starved Tetrahymena.  相似文献   

7.
Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.  相似文献   

8.
Heterotrimeric kinesin-II is a plus end– directed microtubule (MT) motor protein consisting of distinct heterodimerized motor subunits associated with an accessory subunit. To probe the intracellular transport functions of kinesin-II, we microinjected fertilized sea urchin eggs with an anti–kinesin-II monoclonal antibody, and we observed a dramatic inhibition of ciliogenesis at the blastula stage characterized by the assembly of short, paralyzed, 9+0 ciliary axonemes that lack central pair MTs. Control embryos show no such defect and form swimming blastulae with normal, motile, 9+2 cilia that contain kinesin-II as detected by Western blotting. Injection of anti–kinesin-II into one blastomere of a two-cell embryo leads to the development of chimeric blastulae covered on one side with short, paralyzed cilia, and on the other with normal, beating cilia. We observed a unimodal length distribution of short cilia on anti–kinesin-II–injected embryos corresponding to the first mode of the trimodal distribution of ciliary lengths observed for control embryos. This short mode may represent a default ciliary assembly intermediate. We hypothesize that kinesin-II functions during ciliogenesis to deliver ciliary components that are required for elongation of the assembly intermediate and for formation of stable central pair MTs. Thus, kinesin-II plays a critical role in embryonic development by supporting the maturation of nascent cilia to generate long motile organelles capable of producing the propulsive forces required for swimming and feeding.  相似文献   

9.
To elucidate further the molecular events required for cytodifferentiation in Stentor coeruleus, the effects of several chemical metabolic inhibitors were tested on the outgrowth in situ of the membranellar cilia of the oral feeding organelle. The chemicals used included several inhibitors of cytoplasmic and mitochondrial protein synthesis (cycloheximide, emetine, and chloramphenicol), and an antimitotic agent (colchicine). Ciliary growth was affected only by colchicine, suggesting that a pool of “ciliary proteins” exists in interphase Stentor of sufficient size to permit complete reformation of the membranellar cilia. The implication of these observations to an understanding of the more complicated process of oral regeneration is discussed.  相似文献   

10.
Eukaryotic cilia and flagella are assembled and maintained by the bidirectional intraflagellar transport (IFT). Studies in alga, nematode, and mouse have shown that the heavy chain (Dyh2) and the light intermediate chain (D2LIC) of the cytoplasmic dynein-2 complex are essential for retrograde intraflagellar transport. In these organisms, disruption of either dynein-2 component results in short cilia/flagella with bulbous tips in which excess IFT particles have accumulated. In Tetrahymena, the expression of the DYH2 and D2LIC genes increases during reciliation, consistent with their roles in IFT. However, the targeted elimination of either DYH2 or D2LIC gene resulted in only a mild phenotype. Both knockout cell lines assembled motile cilia, but the cilia were of more variable lengths and less numerous than wild-type controls. Electron microscopy revealed normally shaped cilia with no swelling and no obvious accumulations of material in the distal ciliary tip. These results demonstrate that dynein-2 contributes to the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena.  相似文献   

11.
Motile cilia and flagella play critical roles in fluid clearance and cell motility, and dysfunction commonly results in the pediatric syndrome primary ciliary dyskinesia (PCD). CFAP221, also known as PCDP1, is required for ciliary and flagellar function in mice and Chlamydomonas reinhardtii, where it localizes to the C1d projection of the central microtubule apparatus and functions in a complex that regulates flagellar motility in a calcium-dependent manner. We demonstrate that the genes encoding the mouse homologues of the other C. reinhardtii C1d complex members are primarily expressed in motile ciliated tissues, suggesting a conserved function in mammalian motile cilia. The requirement for one of these C1d complex members, CFAP54, was identified in a mouse line with a gene-trapped allele. Homozygous mice have PCD characterized by hydrocephalus, male infertility, and mucus accumulation. The infertility results from defects in spermatogenesis. Motile cilia have a structural defect in the C1d projection, indicating that the C1d assembly mechanism requires CFAP54. This structural defect results in decreased ciliary beat frequency and perturbed cilia-driven flow. This study identifies a critical role for CFAP54 in proper assembly and function of mammalian cilia and flagella and establishes the gene-trapped allele as a new model of PCD.  相似文献   

12.
Several proteins, including microtubule proteins, have been isolated from the oral apparatus of the ciliate Tetrahymena. The synthesis of these proteins has been studied in relation to formation of this organelle system by the cell. Electron microscopy has shown that the isolated oral apparatus consists primarily of basal bodies, pellicular membranes, and a system of subpellicular microtubules and filaments. Cilia were removed during the isolation; therefore none of the proteins studied was from these structures. Evidence was obtained from the study of total oral apparatus protein which indicates that at least some of the proteins involved in formation of this organelle system may be synthesized and stored in the cytoplasm for use over long periods. This pattern of regulation was found for three individual proteins isolated from the oral apparatus fraction after extraction with a phenol-acetic acid solvent. A different pattern of regulation was found for microtubule proteins isolated from the oral apparatus of Tetrahymena. The data suggest that microtubule proteins, at least in logarithmically growing cells, are not stored in a cytoplasmic pool but are synthesized in the same cell cycle in which they are assembled into oral structures.  相似文献   

13.
Microtubules deployed during early development of the sea urchinembryo are derived both from a preexisting pool of subunitspresent in the egg and from microtubule protein subunits synthesizedin the embryo. Several aspects of microtubule protein synthesisand utilization are reviewed. Microtubule protein synthesisin early development utilizes oogenetic messenger RNA species.Translation of this mRNA is under regulation. Microtubule proteinsynthesis rises concomitantly with overall protein synthesisat fertilization, but rises at a relatively higher rate laterin cleavage stages. Microtubule protein labeled with [3H]-leucinein early development is incorporated into cilia, indicatingthat newly synthesized protein enters the pool of subunits usedin organelle assembly. The microtubule protein pool comprisesabout 1%of the soluble protein of the egg, and remains constantin size at least until the blastula stage. Direct pool sizeestimates are consistent with results of experiments on recruitmentof microtubule protein subunits into the mitotic apparatus andinto regenerating cilia. Soluble and particulate colchicinebinding fractions, which have been reported from several systems,appear to be present in sea urchin embryos. The possible roleof such fractions are discussed, as are aspects of the regulationof ciliary assembly.  相似文献   

14.
The role of microtubules and microtubule nucleating sites in the unicell, Ochromonas has been examined through the use of two mitotic inhibitors, isopropyl N-phenylcarbamate (IPC) and isopropyl N-3-chlorophenyl carbamate (CIPC). Although IPC and CIPC have little or no effect on intact microtubules, the assembly of three separate sets of microtubules in Ochromonas has been found to be differentially affected by IPC and CIPC. The assembly of flagellar microtubules after mechanical deflagellation is partially inhibited; the reassembly of rhizoplast microtubules after pressure depolymerization is totally inhibited (however, macrotubules may form at the sites of microtubule initiation or elsewhere); and, the reassembly of the beak set of microtubules after pressure depolymerization may be unaffected although similar concentrations of IPC and CICP completely inhibit microtubule regeneration on the rhizoplast. These effects on microtubule assembly, either inhibitory or macrotubule inducing, are fully reversible. The kinetics of inhibition and reversal are found to be generally similar for both flagellar and cell shape regeneration. Incorporation data suggest that neither IPC nor CIPC has significant effects on protein synthesis in short term experiments. Conversely, inhibiting protein synthesis with cycloheximide has little effect on microtubule regeneration when IPC or CIPC is removed. Although the exact target for IPC and CIPC action remains uncertain, the available evidence suggests that the microtubule protein pool or the microtubule nucleating sites are specifically and reversibly affected. Comparative experiments using the mitotic inhibitor colchicine indicate some similarities and differences in its mode of action with respect to that of IPC and CIPC on assembly and disassembly of microtubules in these cells.  相似文献   

15.
Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.  相似文献   

16.
The proposal made in the preceding paper that the species-specific shape of Ochromonas is mediated by cytoplasmic microtubules which are related to two nucleating sites has been experimentally verified. Exposure of cells to colchicine or hydrostatic pressure causes microtubule disassembly and a correlative loss of cell shape in a posterior to anterior direction. Upon removal of colchicine or release of pressure, cell shape regenerates and microtubules reappear, first in association with the kineto-beak site concomitant with regeneration of the anterior asymmetry, and later at the rhizoplast site concomitant with formation of the posterior tail. It is concluded that two separate sets of cytoplasmic tubules function in formation and maintenance of specific portions of the total cell shape. On the basis of the following observations, we further suggest that the beak and rhizoplast sites could exert control over the position and timing of the appearance, the orientation, and the pattern of microtubule distribution in Ochromonas. (a) the two sites are accurately positioned in the cell relative to other cell organelles; (b) in regenerating cells microtubules reform first at these sites and appear to elongate to the cell posterior; (c) microtubules initially reappear in the orientation characteristic of the fully differentiated cell; (d) the two sets of tubules are polymerized at different times, in the same sequence, during reassembly or resynthesis of the microtubular system. Experiments using cycloheximide, after a treatment with colchicine, have demonstrated that Ochromonas cannot reassume its normal shape without new protein synthesis. This suggests that microtubule protein once exposed to colchicine cannot be reassembled into microtubules. Pressure-treated cells, on the other hand, reassemble tubules and regenerate the normal shape in the presence or absence of cycloheximide. The use of these two agents in analyzing nucleating site function and the independent processes of synthesis and assembly of microtubules is discussed.  相似文献   

17.
Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia.  相似文献   

18.
Ciliopathies are Mendelian disorders caused by dysfunction of cilia, ubiquitous organelles involved in fluid propulsion (motile cilia) or signal transduction (primary cilia). Retinal dystrophy is a common phenotypic characteristic of ciliopathies since photoreceptor outer segments are specialized primary cilia. These ciliary structures heavily rely on intracellular minus-end directed transport of cargo, mediated at least in part by the cytoplasmic dynein 1 motor complex, for their formation, maintenance and function. Ninein-like protein (NINL) is known to associate with this motor complex and is an important interaction partner of the ciliopathy-associated proteins lebercilin, USH2A and CC2D2A. Here, we scrutinize the function of NINL with combined proteomic and zebrafish in vivo approaches. We identify Double Zinc Ribbon and Ankyrin Repeat domains 1 (DZANK1) as a novel interaction partner of NINL and show that loss of Ninl, Dzank1 or both synergistically leads to dysmorphic photoreceptor outer segments, accumulation of trans-Golgi-derived vesicles and mislocalization of Rhodopsin and Ush2a in zebrafish. In addition, retrograde melanosome transport is severely impaired in zebrafish lacking Ninl or Dzank1. We further demonstrate that NINL and DZANK1 are essential for intracellular dynein-based transport by associating with complementary subunits of the cytoplasmic dynein 1 motor complex, thus shedding light on the structure and stoichiometry of this important motor complex. Altogether, our results support a model in which the NINL-DZANK1 protein module is involved in the proper assembly and folding of the cytoplasmic dynein 1 motor complex in photoreceptor cells, a process essential for outer segment formation and function.  相似文献   

19.
Despite recent progress in defining the ciliome, the genetic basis for many cases of primary ciliary dyskinesia (PCD) remains elusive. We evaluated five children from two unrelated, consanguineous Palestinian families who had PCD with typical clinical features, reduced nasal nitric oxide concentrations, and absent dynein arms. Linkage analyses revealed a single common homozygous region on chromosome 8 and one candidate was conserved in organisms with motile cilia. Sequencing revealed a single novel mutation in LRRC6 (Leucine-rich repeat containing protein 6) that fit the model of autosomal recessive genetic transmission, leading to a change of a highly conserved amino acid from aspartic acid to histidine (Asp146His). LRRC6 was localized to the cytoplasm and was up-regulated during ciliogenesis in human airway epithelial cells in a Foxj1-dependent fashion. Nasal epithelial cells isolated from affected individuals and shRNA-mediated silencing in human airway epithelial cells, showed reduced LRRC6 expression, absent dynein arms, and slowed cilia beat frequency. Dynein arm proteins were either absent or mislocalized to the cytoplasm in airway epithelial cells from a primary ciliary dyskinesia subject. These findings suggest that LRRC6 plays a role in dynein arm assembly or trafficking and when mutated leads to primary ciliary dyskinesia with laterality defects.  相似文献   

20.
Flagellar regeneration in gametes of Chlamydomonas reinhardi is initiated within 15–20 min after flagellar amputation and proceeds at a rapid but decelerating rate until by 90 min flagellar outgrowth is 80–85% complete. Sufficient flagellar protein reserves exist in the cytoplasm to allow regeneration of flagella 1312 normal length. Nevertheless, in vivo labeling with 14C-amino acids shows that microtubule protein and other flagellar proteins are synthesized de novo during flagellar regeneration. To determine whether tubulin is synthesized continuously by gametic cells or whether its synthesis is induced as a consequence of deflagellation, we have isolated polyribosomes from deflagellated and control cells, and analyzed the proteins produced by these polyribosomes during in vitro translation. Two proteins of 53,000 and 56,000 molecular weight which co-migrate with flagellar and chick brain tubulin on SDS-polyacrylamide gels and which selectively co-assemble with chick brain tubulin during in vitro microtubule assembly are synthesized by polyribosomes (or polyadenylated mRNA) from deflagellated cells. No microtubule proteins can be detected in the translation products synthesized by polyribosomes (or mRNA) from control cells, clearly indicating that deflagellation results in the induction of tubulin synthesis.Kinetics of tubulin synthesis demonstrate that induction takes place immediately after deflagellation; polyribosomes bearing tubulin mRNA can be detected in the cytoplasm in as little as 15 min after removal of flagella. Maximal rates of tubulin synthesis occur between 45 and 90 min after deflagellation when approximately 14% of the protein being synthesized by the cell is tubulin. This estimate of tubulin synthesis based on in vitro translation data agrees well with in vivo measurements of flagellar tubulin synthesis. While high levels of tubulin production extend well beyond the period of rapid flagellar assembly, synthesis begins to decline after 90 min, and by 180 min after deflagellation only low levels of tubulin mRNA are detectable in polyribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号