首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marine environment seems, at first sight, to be a homogeneous medium lacking barriers to species dispersal. Nevertheless, populations of marine species show varying levels of gene flow and population differentiation, so barriers to gene flow can often be detected.We aim to elucidate the role of oceanographical factors in generating connectivity among populations shaping the phylogeographical patterns in the marine realm, which is not only a topic of considerable interest for understanding the evolution of marine biodiversity but also for management and conservation of marine life. For this proposal, we investigate the genetic structure and connectivity between continental and insular populations of white seabream in North East Atlantic (NEA) and Mediterranean Sea (MS) as well as the influence of historical and contemporary factors in this scenario using mitochondrial (cytochrome b) and nuclear (a set of 9 microsatellite) molecular markers.Azores population appeared genetically differentiated in a single cluster using Structure analysis. This result was corroborated by Principal Component Analysis (PCA) and Monmonier algorithm which suggested a boundary to gene flow, isolating this locality. Azorean population also shows the highest significant values of FST and genetic distances for both molecular markers (microsatellites and mtDNA). We suggest that the breakdown of effective genetic exchange between Azores and the others' samples could be explained simultaneously by hydrographic (deep water) and hydrodynamic (isolating current regimes) factors acting as barriers to the free dispersal of white seabream (adults and larvae) and by historical factors which could be favoured for the survival of Azorean white seabream population at the last glaciation.Mediterranean islands show similar genetic diversity to the neighbouring continental samples and non-significant genetic differences. Proximity to continental coasts and the current system could promote an optimal larval dispersion among Mediterranean islands (Mallorca and Castellamare) and coasts with high gene flow.  相似文献   

2.
Poecilogony, a rare phenomenon in marine invertebrates, occurs when alternative larval morphs differing in dispersal potential or trophic mode are produced from a single genome. Because both poecilogony and cryptic species are prevalent among sea slugs in the suborder Sacoglossa (Gastropoda: Opisthobranchia), molecular data are needed to confirm cases of variable development and to place them in a phylogenetic context. The nominal species Alderia modesta produces long-lived, feeding larvae throughout the North Atlantic and Pacific, but in California can also produce short-lived larvae that metamorphose without feeding. We collected morphological, developmental, and molecular data for Alderia from 17 sites spanning the eastern and western Pacific and North Atlantic. Estuaries south of Bodega Harbor, California, contained a cryptic species (hereafter Alderia sp.) with variable development, sister to the strictly planktotrophic A. modesta. The smaller Alderia sp. seasonally toggled between planktotrophy and lecithotrophy, with some individuals differing in development but sharing mitochondrial DNA haplotypes. The sibling species overlapped in Tomales Bay, California, but showed no evidence of hybridization; laboratory mating trials suggest postzygotic isolation has arisen. Intra- and interspecific divergence times were estimated using a molecular clock calibrated with geminate sacoglossans. Speciation occurred about 4.1 million years ago during a major marine radiation in the eastern Pacific, when large inland embayments in California may have isolated ancestral populations. Atlantic and Pacific A. modesta diverged about 1.7 million years ago, suggesting trans-Arctic gene flow was interrupted by Pleistocene glaciation. Both Alderia species showed evidence of late Pleistocene population expansion, but the southern Alderia sp. likely experienced a more pronounced bottleneck. Reduced body size may have incurred selection against obligate planktotrophy in Alderia sp. by limiting fecundity in the face of high larval mortality rates in warm months. Alternatively, poecilogony may be an adaptive response to seasonal opening of estuaries, facilitating dispersal by long-lived larvae. An improved understanding of the forces controlling seasonal shifts in development in Alderia sp. may yield insight into the evolutionary forces promoting transitions to nonfeeding larvae.  相似文献   

3.
Gigantism in isolated ponds in the absence of sympatric fish species has previously been observed in nine-spined sticklebacks (Pungitius pungitius). Patterns in sexual size dimorphism suggested that fecundity selection acting on females might be responsible for the phenomenon. However, the growth strategy behind gigantism in pond sticklebacks has not been studied yet. Here, we compared von Bertalanffy growth parameters of four independent nine-spined stickleback populations reared in a common laboratory environment: two coastal marine (typical size) and two pond (giant size) populations. We found that both pond populations had larger estimated final size than marine populations, which in turn exhibited higher intrinsic growth rates than the pond populations. Female growth strategies were more divergent among marine and pond populations than those of males. Asymptotic body size and intrinsic growth rate were strongly negatively correlated. Hence, pond versus marine populations exhibited different growth strategies along a continuum. Our data suggest that quick maturation—even with the cost of being small (low fecundity)—is favoured in marine environments. On the contrary, growth to a giant final size (high fecundity)—even if it entails extended growth period—is favoured in ponds. We suggest that the absence (ponds) versus presence (marine environment) of sympatric predatory fish species, and the consequent change in the importance of intraspecific competition are responsible for the divergence in growth strategies. The sex-dependence of the patterns further emphasizes the role of females in the body size divergence in the species. Possible alternative hypotheses are also discussed.  相似文献   

4.
Some overharvested fish populations fail to recover even after considerable reductions in fishing pressure. The reasons are unclear but may involve genetic changes in life history traits that are detrimental to population growth when natural environmental factors prevail. We empirically modelled this process by subjecting populations of a harvested marine fish, the Atlantic silverside, to experimental size-biased fishing regimes over five generations and then measured correlated responses across multiple traits. Populations where large fish were selectively harvested (as in most fisheries) displayed substantial declines in fecundity, egg volume, larval size at hatch, larval viability, larval growth rates, food consumption rate and conversion efficiency, vertebral number, and willingness to forage. These genetically based changes in numerous traits generally reduce the capacity for population recovery.  相似文献   

5.
Genetic divergence among populations of marine broadcast spawners in the absence of past geological barriers presents an intriguing challenge to understanding speciation in the sea. To determine how differences in life history affect genetic divergence and demographic histories across incomplete dispersal barriers, we conducted a comparative phylogeographic study of three intertidal limpets (Siphonaria spp.) represented on either side of a biogeographic disjunction separating tropical and subtropical marine provinces in southeastern Africa. Using a combination of mitochondrial and nuclear sequence data, we identified two distinct evolutionary lineages each in both Siphonaria concinna (a planktonic disperser) and S. nigerrima (a direct developer), and panmixia in a second planktonic disperser, S. capensis. Although phylogeographic breaks were present in two species, how these became established differed depending on their life histories. In the direct developer, lack of gene flow following divergence, and demographic expansion from a small initial size in the species' subtropical population, point to a single colonisation event. In contrast, the evolutionary lineages of the planktonic disperser split into two genetic lineages with much larger initial population sizes and southward gene flow continued at least periodically, indicating that divergence in this species may have been driven by a combination of reduced larval dispersal and divergent selection. These findings help explain why the presence or absence of phylogeographic breaks often appears to be independent of species' dispersal potential.  相似文献   

6.
Little is known about local adaptations in marine fishes since population genetic surveys in these species have typically not applied genetic markers subject to selection. In this study, we used a candidate gene approach to investigate adaptive population divergence in the European flounder (Platichthys flesus L.) throughout the northeastern Atlantic. We contrasted patterns of genetic variation in a presumably neutral microsatellite baseline to patterns from a heat-shock cognate protein gene, Hsc70. Using two different neutrality tests we found that the microsatellite data set most likely represented a neutral baseline. In contrast, Hsc70 strongly deviated from neutral expectations. Importantly, when estimating standardized levels of population divergence (F(ST)'), we also found a large discrepancy in the patterns of structuring in the two data sets. Thus, samples grouped according to geographical or historical proximity with regards to microsatellites, but according to environmental similarities with regards to Hsc70. The differences between the data sets were particularly pronounced in pairwise comparisons involving populations in the western and central Baltic Sea. For instance, the genetic differentiation between geographically close Baltic Sea and North Sea populations was found to be 0.02 and 0.45 for microsatellites and Hsc70 respectively. Our results strongly suggest adaptive population divergence and indicate local adaptations at the DNA level in a background of high levels of gene flow, typically found in many marine fish species. Furthermore, this study highlights the usefulness of the candidate gene approach for demonstrating local selection in non-model organisms such as most marine fishes.  相似文献   

7.
The European eel (Anguilla anguilla L.) has been a prime example of the panmixia paradigm because of its extraordinary adaptation to the North Atlantic gyral system, semelparous spawning in the Sargasso Sea and long trans-oceanic migration. Recently, this view was challenged by the suggestion of a genetic structure characterized by an isolation-by-distance (IBD) pattern. This is only likely if spawning subpopulations are spatially and/or temporally separated, followed by non-random larval dispersal. A limitation of previous genetic work on eels is the lack of replication over time to test for temporal stability of genetic structure. Here, we hypothesize that temporal genetic variation plays a significant role in explaining the spatial structure reported earlier for this species. We tested this by increasing the texture of geographical sampling and by including temporal replicates. Overall genetic differentiation among samples was low, highly significant and comparable with earlier studies (FST = 0.0014; p < 0.01). On the other hand, and in sharp contrast with current understandings, hierarchical analyses revealed no significant inter-location genetic heterogeneity and hence no IBD. Instead, genetic variation among temporal samples within sites clearly exceeded the geographical component. Our results provide support for the panmixia hypothesis and emphasize the importance of temporal replication when assessing population structure of marine fish species.  相似文献   

8.
9.
Abstract Coral-reef fishes, like many other marine organisms, generally possess a benthic adult stage and pelagic larval stage. What can population genetics studies tell us about the demographic, evolutionary and biogeographic consequences of this life cycle? Ten studies of geographical patterns of intraspecific genetic differentiation in reef fishes have been published. These studies have included 2t > species/species complexes (14 in the family Pomacentridae, the remaining 12 in 9 different families) and have been about equally divided between the tropical Pacific and the tropical western Atlantic. A survey of these studies shows the following: (i) the existence of the pelagic larval stage appears to have led to high levels of gene flow even among populations separated by thousands of kilometres of open ocean; (ii) an apparent pattern of increased gene flow among populations connected by intermediate 'stepping stones’; (iii) very tentative evidence for a relationship between length of pelagic larval life and gene flow; (iv) no clear relationship between egg type (pelagic rs non-pelagic) and gene flow; and (v) suggestive evidence that damselfishes (family Pomacentridae) may have more restricted dispersal (less gene flow) than other reef fishes. The application of current and future molecular tools has the strong potential to clarify some of these relationships, particularly by using relatively neutral genetic markers. Additionally, discoveries of DNA markers having very high rates of mutation may allow tracking of demographically relevant levels of larval dispersal. Molecular tools are becoming especially valuable in uncovering the biogeographic and phylogenetic history of reef fishes. The one molecular study to date has suggested that at least some speciation events may have occurred during the climate changes and sea-level regressions associated with Pleistocene glacial episodes. Molecular tools need to be used to further explore the means by which high species diversity can be generated in the face of the apparently high gene flow observed in most coral-reef fishes.  相似文献   

10.
The quality of food eaten by larval insects will affect traits such as gamete production, fat reserves, muscle bulk and body size in the adult. Moreover, larvae also depend on high moisture content in the diet for survival. The almond moth (Ephestia cautella) (W.) (Lepidoptera; Pyralidae) does not feed as an adult although it continues to drink water. We tested the idea that an almond moth could compensate for a low-water diet as a larva by increasing its water intake as an adult. We reared larvae on two different food sources with different moisture regimes; standard laboratory diet with glycerol (relatively wet) and standard diet without glycerol (relatively dry). Half the adult moths from each treatment were given water to drink before their first and only mating. Our results show that wet larval diets (i.e. containing glycerol) significantly decreased fecundity (total number of eggs laid and the proportion of hatched larvae), whilst it significantly increased male and female longevity. The interaction effect of water access for adult males and females was significant, independent of the glycerol in the larval diet. Longevity in females that were not presented with water as adults was slightly higher if mated with a male that had had access to water, suggesting a mating donation of water. However, females that received water as adults showed a decreased longevity if mated with a male who had also had access to water as an adult, indicating a negative effect of water if received by both males and females. In addition, when the larval diet included glycerol, increased number of eggs laid decreased female longevity, whilst an absence of glycerol in the larval diet resulted in low female longevity that was unlinked with fecundity. Glycerol is used in many artificial insect diets and the fact that it shows a strong effect on key life-history traits (reproductive output and longevity in this species), merits careful re-examination of its effects on these important traits in other laboratory models. We also discuss the possibility that larval diet can affect female reproductive decisions.  相似文献   

11.
Population structuring in species inhabiting marine environments such as the Northeast Atlantic Ocean (NEA) and Mediterranean Sea (MS) has usually been explained based on past and present physical barriers to gene flow and isolation by distance (IBD). Here, we examined the relative importance of these factors on population structuring of the common cuttlefish Sepia officinalis by using methods of phylogenetic inference and hypothesis testing coupled with coalescent and classical population genetic parameter estimation. Individuals from 10 Atlantic and 15 Mediterranean sites were sequenced for 659 bp of the mitochondrial COI gene (259 sequences). IBD seems to be the main factor driving present and past genetic structuring of Sepia populations across the NEA-MS, both at large and small geographical scales. Such an evolutionary process agrees well with some of the biological features characterizing this cuttlefish species (short migrations, nektobenthic habit, benthic eggs hatching directly to benthic juveniles). Despite the many barriers to migration/gene flow suggested in the NEA-MS region, genetic population fragmentation due to past isolation of water masses (Pleistocene; 0.56 million years ago) and/or present-day oceanographic currents was only detected between the Aegean-Ionian and western Mediterranean Seas. Restricted gene flow associated with the Almería-Oran hydrographic front was also suggested between southern and eastern Spanish populations. Distinct population boundaries could not be clearly determined, except for the Aegean-Ionian stock. Two Atlantic and five Mediterranean samples showed evidence of current decline in genetic diversity, which may indicate over-exploitation of Sepia in both marine regions.  相似文献   

12.
Connectivity among marine populations is critical for persistence of metapopulations, coping with climate change, and determining the geographic distribution of species. The influence of pelagic larval duration (PLD) on connectivity has been studied extensively, but relatively little is known about the influence of other biological parameters, such as the survival and behavior of larvae, and the fecundity of adults, on population connectivity. Furthermore, the interaction between the seascape (habitat structure and currents) and these biological parameters is unclear. We explore these interactions using a biophysical model of larval dispersal across the Indo-Pacific. We describe an approach that quantifies geographic patterns of connectivity from demographically relevant to evolutionarily significant levels across a range of species. We predict that at least 95% of larval settlement occurs within 155?km of the source population and within 13 days irrespective of the species' life history, yet long-distant connections remain likely. Self-recruitment is primarily driven by the local oceanography, larval mortality, and the larval precompetency period, whereas broad-scale connectivity is strongly influenced by reproductive output (abundance and fecundity of adults) and the length of PLD. The networks we have created are geographically explicit models of marine connectivity that define dispersal corridors, barriers, and the emergent structure of marine populations. These models provide hypotheses for empirical testing.  相似文献   

13.
Most studies on size–fitness relationships focus on females and neglect males. Here, we investigated how body size of both sexes of an aphid parasitoid, Aphidius ervi Haliday, affected the reproductive fitness. Reproductive fitness was generally positively correlated with body size for both sexes in this species. Large individuals of both sexes had greater longevity, large males fathered more progeny, and large females had higher fecundity, parasitism, and greater ability in host searching and handling. We demonstrated in this study that size effects of males and females were asymmetric on different reproductive fitness parameters. With increasing body size females gained more than males in longevity and fecundity while males gained more than females in the number of female progeny. Regardless of female size, large males sustained a female-biased population longer than small males. These results suggest that male body size should also be considered in the quality control of mass-rearing programs and the evaluation of parasitoid population growth.  相似文献   

14.
Dispersal via pelagic larval stages plays a key role in population connectivity of many marine species. The degree of connectivity is often correlated with the time that larvae spend in the water column. The Antarctic notothenioid fishes develop through an unusually long pelagic larval phase often exceeding 1 year. Notothenioids thus represent a prime model system for studying the influence of prolonged larval phases on population structure in otherwise demersal species. Here, we compare the population genetic structure and demographic history of two sub‐Antarctic crocodile icefish species (Chaenocephalus aceratus and Champsocephalus gunnari) from the Scotia Arc and Bouvet Island in the Atlantic sector of the Southern Ocean to delineate the relative importance of species‐specific, oceanographic and paleoclimatic factors to gene flow. Based on 7 (C. aceratus) and 8 (C. gunnari) microsatellites, as well as two mitochondrial DNA markers (cytochrome b, D‐loop), we detect pronounced population genetic structure in both species (amova FSTs range from 0.04 to 0.53). High genetic similarities were found concordantly in the populations sampled at the Southern Scotia Arc between Elephant Island and South Orkney Islands, whereas the populations from Bouvet Island, which is located far to the east of the Scotia Arc, are substantially differentiated from those of the Scotia Arc region. Nonetheless, haplotype genealogies and Bayesian cluster analyses suggest occasional gene flow over thousands of kilometres. Higher divergences between populations of C. gunnari as compared to C. aceratus are probably caused by lower dispersal capabilities and demographic effects. Bayesian skyline plots reveal population size reductions during past glacial events in both species with an estimated onset of population expansions about 25 000 years ago.  相似文献   

15.
Abstract.  1. In phytophagous insects, life-history traits mainly depend on host plant range. Substantial longevity, high fecundity and larval competition are the major traits of polyphagous Tephritidae while species with a restricted host range generally exhibit a lower longevity and fecundity as well as mechanisms to avoid larval competition. Our aim in this study was to investigate the life history of an oligophagous species, the tomato fruit fly, Neoceratitis cyanescens (Bezzi).
2. We determined life tables under laboratory conditions in order to calculate the main demographic parameters of N. cyanescens and studied the influence of larval and adult diet on life-history traits.
3. The mean longevity of N. cyanescens females was 40 days. There was a strong synchronisation of female maturity. Oviposition showed an early peak at 9–13 days after a short pre-oviposition period (6 days). The absence of proteins in the adult diet both delayed ovarian maturation and decreased female fecundity. In addition, females originating from tomato fruits produced significantly more eggs than females originating from bugweed or black nightshade, showing that even the larval host plant may strongly affect the subsequent fecundity of adult females.
4. The traits of N. cyanescens are then discussed in the light of those documented for polyphagous and monophagous tephritids. Neoceratitis cyanescens displayed attributes intermediate between those of polyphagous and monophagous tephritids. Its smaller clutch size compared with polyphagous species and its specialisation on the Solanaceae family whose fruits contain toxic compounds may help in reducing intra- and inter-specific competition, respectively.  相似文献   

16.
The scombrids (tunas, bonitos, Spanish mackerels and mackerels) sustain some of the most important fisheries in the world and their sustainable management depends on better understanding of their life history strategies. Here, we first assemble life history information on maximum size, growth, longevity, maturity, fecundity and spawning duration and interval for all scombrid species. Second we characterize their life history patterns and trait co-variation and evaluate how many principal axes of trait variation underlie scombrid life history strategies. Most of their life history variation can be explained along three axes or dimensions: size, speed, and reproductive schedule. Body size governs the first axis ranking species along a small-large continuum. The second axis was mostly influenced by time-related traits, such as longevity, growth rates, spawning duration, time between spawning events, ranking species along a slow-fast continuum of life histories. Scombrid species with the slowest life histories such as Atlantic bluefin tuna Thunnus thynnus and Atlantic mackerel Scomber scombrus tend to inhabit more temperate waters while species with faster life histories such as yellowfin tuna Thunnus albacares and short mackerel Rastrelliger brachysoma are typically found in more tropical waters. The third axis comprises the negative relationship between number of eggs produced at length of maturity and rate in gain of fecundity with size describing the schedule of reproductive allocation which reflects a fundamental trade-off between reproduction and growth. Finally, in addition we show that the life history strategies of scombrids conform more closely to the Periodic and Opportunistic strategists within the triangular model of fish life histories.  相似文献   

17.
The efficient investment of resources and effort into conservation strategies depends on the accurate identification of management units. At the same time, understanding the processes by which population structure evolves requires an understanding of the conditions under which panmixia may exist. Here, we study a species with an unusual, apparently sex-biased pattern of distribution, and test the hypothesis that distribution processes associated with this pattern (for example, congregating at a single dominant spawning site or periodic mixing during reproduction) could lead to panmixia over a large geographic range. Using 13 microsatellite markers, we compared 393 blue hake (Antimora rostrata) from 11 sample sites across a geographic range of over 3000 km, and found no evidence of population structure. We estimated current effective population size and found it to be large (∼15 000) across the sampled area. In addition, we used simulation models to test expectations about demographic correlation among populations and our ability to detect relevant levels of gene flow. All data were consistent with the interpretation of long-range panmixia.  相似文献   

18.
Geographical variation in offspring size effects across generations   总被引:2,自引:0,他引:2  
Dustin J. Marshall 《Oikos》2005,108(3):602-608
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.  相似文献   

19.
Clinus cottoides is a fish endemic to the coast of South Africa, predominantly inhabiting rock pools. All South African clinids are viviparous, but probably breed throughout the year; as such, their dispersal may be limited, unlike species with pelagic larval stages. We analysed 343 fish from 14 localities on the west, south and east coasts using two mitochondrial genes and the second intron of the S7 ribosomal gene. Mitochondrial DNA analyses recovered significant genetic differentiation between fish populations from the east coast and other sampling locations, with a second break found between Gansbaai and Cape Agulhas on the south coast. Nuclear DNA recovered shallower, but significant, levels of population structure. Coalescent analyses suggested remarkably asymmetrical gene flow between sampling locations, suggesting that the cold Atlantic Benguela Current and Indian Ocean Agulhas counter‐current play important roles in facilitating dispersal. There was no gene flow between the east coast and the other sites, suggesting that these populations are effectively isolated. Divergence times between them were estimated to at least 68 000 years. Neutrality tests and mismatch distributions suggest recent population expansions, with the exception of peripheral western and eastern populations (possibly a consequence of environmental extremes at the edge of the species distribution). Analyses of the current South African marine protected areas network show that it is not connected and that De Hoop, one of South Africa's largest marine reserves, appears to be an important source population of recruits to both the south and southwest coasts.  相似文献   

20.
Many organisms with complex life cycles show considerable variation in size and timing at metamorphosis. Adult males of Megarcyssignata (Plecoptera: Perlodidae) are significantly smaller than females and emerge before females (protandry) from two western Colorado streams. During summer 1992 stoneflies from a trout stream emerged earlier in the season and at larger sizes than those from a colder fishless stream, and size at metamorphosis did not change over the emergence period in either stream. We performed two experiments to determine whether variation in size at metamorphosis affected the fecundity, reproductive success and longevity of individuals of this stonefly species and if total lifetime fecundity was affected by the number of matings. In the first experiment, total lifetime fecundity (eggs oviposited) was determined for adult females held in small plastic cages in the field. Males were removed after one copulation, or pairs were left together for life and allowed to multiply mate. Most copulations occurred in the first few days of the experiment. Females in treatments allowing multiple matings had significantly lower total lifetime fecundity and shorter adult longevity than females that only mated once. Multiple matings also reduced longevity of males. Fecundity increased significantly with female body mass at emergence, but only for females that mated once. While multiple matings eliminated the fecundity advantage of large female body size, number of matings did not affect the significant positive relationship between body mass at metamorphosis and longevity of males or females. In a second experiment designed to determine if body mass at emergence affected male mating success, we placed one large and one small male Megarcys in an observation arena containing one female and recorded which male obtained the first mating. The large and the small male had equal probabilities of copulating with the female. Copulations usually lasted all night, and the unmated male made frequent, but unsuccessful attempts to take over the copulating female. Our data suggest that selection pressures determining body size at metamorphosis may operate independently on males and females, resulting in evolution of sexual size dimorphism, protandry, and mating early in the adult stage. We emphasize the importance of interpreting the fitness consequences of larval growth and development on the timing of and size at metamorphosis in the context of the complete life cycle. Received: 1 July 1997 / Accepted: 12 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号