首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficient investment of resources and effort into conservation strategies depends on the accurate identification of management units. At the same time, understanding the processes by which population structure evolves requires an understanding of the conditions under which panmixia may exist. Here, we study a species with an unusual, apparently sex-biased pattern of distribution, and test the hypothesis that distribution processes associated with this pattern (for example, congregating at a single dominant spawning site or periodic mixing during reproduction) could lead to panmixia over a large geographic range. Using 13 microsatellite markers, we compared 393 blue hake (Antimora rostrata) from 11 sample sites across a geographic range of over 3000 km, and found no evidence of population structure. We estimated current effective population size and found it to be large (∼15 000) across the sampled area. In addition, we used simulation models to test expectations about demographic correlation among populations and our ability to detect relevant levels of gene flow. All data were consistent with the interpretation of long-range panmixia.  相似文献   

2.
Habitat fragmentation may severely affect survival of social insect populations as the number of nests per population, not the number of individuals, represents population size, hence they may be particularly prone to loss of genetic diversity. Erosion of genetic diversity may be particularly significant among social Hymenoptera such as bumblebees (Bombus spp.), as this group may be susceptible to diploid male production, a suggested direct cost of inbreeding. Here, for the first time, we assess genetic diversity and population structuring of a threatened bumblebee species (Bombus sylvarum) which exists in highly fragmented habitat (rather than oceanic) islands. Effective population sizes, estimated from identified sisterhoods, were very low (range 21-72) suggesting that isolated populations will be vulnerable to loss of genetic variation through drift. Evidence of significant genetic structuring between populations (theta = 0.084) was found, but evidence of a bottleneck was detected in only one population. Comparison across highly fragmented UK populations and a continental population (where this species is more widespread) revealed significant differences in allelic richness attributable to a high degree of genetic diversity in the continental population. While not directly related to population size, this is perhaps explained by the high degree of isolation between UK populations relative to continental populations. We suggest that populations now existing on isolated habitat islands were probably linked by stepping-stone populations prior to recent habitat loss.  相似文献   

3.
Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population FST values ranged between ?0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria‐Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts.  相似文献   

4.
Eleven dinucleotide microsatellites were developed and characterized for Eurycorymbus cavaleriei, a dioecious, rare and endemic tree species in China. A genomic DNA enrichment protocol was used to isolate microsatellite loci and polymorphism was explored using 30 trees from two natural populations. The observed heterozygosity (HO) ranged from 0.379 to 0.931, with an average of 0.625. These markers provide powerful tools for the ongoing population and conservation genetics studies of E. cavaleriei.  相似文献   

5.
Schistosoma japonicum , a parasite of significant public health importance in parts of China and Southeast Asia, is a true generalist pathogen with over 40 species of mammals suspected as definitive host reservoirs. In order to characterize levels of parasite gene flow across host species and identify the most important zoonotic reservoirs, S. japonicum larvae (miracidia) were sampled from a range of definitive host species in two contrasting habitat types within Anhui Province, China: a low-lying marshland region, and a hilly region, where animal reservoir populations may be predicted to differ substantially. Miracidia samples were genotyped using seven multiplexed microsatellite markers. Hierarchical F -statistics and clustering analyses revealed substantial geographical structuring of S. japonicum populations within Anhui, with strong parasite genetic differentiation between habitat types. Within most villages, there was very little or no parasite genetic differentiation among host species, suggesting frequent S. japonicum gene flow, and thus also transmission, across species. Moreover, the data provide novel molecular evidence that rodents and dogs are potentially very important infection reservoirs in hilly regions, in contrast to bovines in the marshland regions. The parasite genetic differentiation between habitat types might therefore be associated with contrasting host reservoirs. The high levels of parasite gene flow observed across host species in sympatric areas have important implications for S. japonicum control, particularly in hilly regions where control of infection among wild rodent populations could be challenging.  相似文献   

6.
Owing to habitat loss populations of many organisms have declined and become fragmented. Vertebrate conservation strategies routinely consider genetic factors, but their importance in invertebrate populations is poorly understood. Bumblebees are important pollinators, and many species have undergone dramatic declines. As monoandrous social hymenopterans they may be particularly susceptible to inbreeding due to low effective population sizes. We study fragmented populations of a bumblebee species, on a model island system, and on mainland Great Britain where it is rare and declining. We use microsatellites to study: population genetic structuring and gene flow; the relationships between genetic diversity, population size and isolation; and frequencies of (sterile) diploid males - an indicator of inbreeding. We find significant genetic structuring (theta = 0.12) and isolation by distance. Populations > 10 km apart are all significantly differentiated, both on oceanic islands and on the mainland. Genetic diversity is reduced relative to closely related common species, and isolated populations exhibit further reductions. Of 16 populations, 10 show recent bottlenecking, and 3 show diploid male production. These results suggest that surviving populations of this rare insect suffer from inbreeding as a result of geographical isolation. Implications for the conservation of social hymenopterans are discussed.  相似文献   

7.
Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest.  相似文献   

8.
Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species’ range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and significant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale ( <10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining ‘connected’8 brush-tailed rock-wallaby colonies in the northern parts of the species’8 range and the remnant endangered populations in the south.  相似文献   

9.
1. Fish assemblages and habitats were sampled annually at fixed sites in three tributaries of the Gila River catchment over a 21‐year span that included prolonged low‐ and high‐flow periods. Model selection was used to evaluate responses of seven native fishes with variable ecological traits (four small‐bodied cyprinids, one large‐bodied cyprinid, and two large‐bodied catostomids) to mean annual discharge and predacious non‐native fishes across the three sites. We also compared habitat use and overlap of native and non‐native fishes to identify potential for negative interactions among species. 2. Assemblage structure (species abundance and richness) and recruitment of native species was strongly and primarily affected by mean annual discharge and secondarily by location and densities of non‐native predators (mainly the centrarchid Micropterus dolomieui). 3. Densities of age‐0 catostomids and small‐bodied cyprinids were positively associated with discharge, and this pattern was strongest in the tributary with the lowest densities of non‐native predators. Absence or extreme low abundance of natives during low‐flow years was most pronounced at the sites where non‐native predators were comparatively common. Densities of adults of large‐bodied native species also varied by site, but often were positively associated with densities of non‐native predators. 4. Spatially variable responses of native fish assemblages indicated that the persistence of native fishes could be jeopardized if key habitats were lost or flow regimes unnaturally altered, particularly during low‐flow conditions when recruitment of native fishes is low and predation by non‐natives is high. Large‐bodied species may be less vulnerable to multiple years of poor conditions because adults are able to avoid predation by non‐natives and thus can rely on occasional high discharge years for successful recruitment. 5. As in other arid‐land streams, native fish assemblages of the Gila River Basin continue to decline. Our results indicate that conservation requires specific knowledge and consideration of physical influences as well as life‐history attributes of native and non‐native fishes.  相似文献   

10.
1. Large river floodplains are considered key nursery habitats for many species of riverine fish. The lower Volga River floodplains (Russian Federation) are still relatively undisturbed, serving as a suitable model for studying the influence of flooding and temperature on fish recruitment in floodplain rivers. 2. We examined the interannual variability in recruitment success of young‐of‐the‐year (YOY) fish in the lower Volga floodplain in relation to flood pulse characteristics and rising water temperatures in the spring. We sampled four areas with different flooding regimes, in three consecutive years (2006–2008). 3. Extensive areas with a long duration of flooding accommodated high densities of young fish. This suggests that extended inundation improves the recruitment success of river fish. In areas with extensive flooding, the biomass of YOY of most fish species was about three times higher in 2006 and 2007 than in 2008. We hypothesise that low spring temperatures in 2008 may have caused this reduced recruitment and that a flood synchronised with rising temperature enhances recruitment success. 4. Extensive flooding was particularly favourable for species characterised by large body size, delayed maturation, high fecundity and low parental investment, such as pike Esox lucius, roach Rutilus rutilus and ide Leuciscus idus. Gibel carp Carassius gibelio, a species tolerant of high temperature and hypoxia, did particularly well in small waterbodies in the driest parts of the floodplain. 5. Structural characteristics of floodplain waterbodies explained much of YOY fish density. These species–environment associations varied from year to year, but some species such as common bream Abramis brama, roach and gibel carp showed consistent relationships with structural habitat characteristics in all years, despite large interannual fluctuations in flood pulse and spring temperature.  相似文献   

11.
Local populations within a species can become isolated by stochastic or adaptive processes, though it is most commonly the former that we quantify. Using presumably neutral markers we can assess the time‐dependent process of genetic drift, and thereby quantify patterns of differentiation in support of the effective management of diversity. However, adaptive differences can be overlooked in these studies, and these are the very characteristics that we hope to conserve by managing neutral diversity. In this study, we used 16 hypothetically neutral microsatellite markers to investigate the genetic structure of the roundnose grenadier in the North Atlantic. We found that one locus was a clear outlier under directional selection, with FST values much greater than at the remaining loci. Differentiation between populations at this locus was related to depth, suggesting directional selection, presumably acting on a linked locus. Considering only the loci identified as neutral, there remained significant population structure over the region of the North Atlantic studied. In addition to a weak pattern of isolation by distance, we identified a putative barrier to gene flow between sample sites either side of the Charlie‐Gibbs Fracture Zone, which marks the location where the sub‐polar front crosses the Mid‐Atlantic Ridge. This may reflect a boundary across which larvae are differentially distributed in separate current systems to some extent, promoting differentiation by drift. Structure due to both drift and apparent selection should be considered in management policy.  相似文献   

12.
Unravelling the mechanisms underlying variation in life history traits is of fundamental importance for our understanding of adaptation by natural selection. While progress has been made in mapping fitness-related phenotypes to genotypes, mainly in a handful of model organisms, functional genomic studies of life history adaptations are still in their infancy. In particular, despite a few notable exceptions, the genomic basis of life history variation in natural populations remains poorly understood. This is especially true for the genetic underpinnings of life history phenotypes subject to diversifying selection driven by ecological dynamics in patchy environments--as opposed to adaptations involving strong directional selection owing to major environmental changes, such as latitudinal gradients, extreme climatic events or transitions from salt to freshwater. In this issue of Molecular Ecology,Wheat et al. (2011) now make a significant leap forward by applying the tools of functional genomics to dispersal-related life history variation in a butterfly metapopulation. Using a combination of microarrays, quantitative PCR and physiological measurements, the authors uncover several metabolic and endocrine factors that likely contribute to the observed life history phenotypes. By identifying molecular candidate mechanisms of fitness variation maintained by dispersal dynamics in a heterogeneous environment,they also begin to address fascinating interactions between the levels of physiology, ecology and evolution.  相似文献   

13.
We investigated genetic differentiation and migration patterns in a small livebearing fish, Poecilia mexicana, inhabiting a sulfidic Mexican limestone cave (Cueva del Azufre). We examined fish from three different cave chambers, the sulfidic surface creek draining the cave (El Azufre) and a nearby surface creek without the toxic hydrogen sulphide (Arroyo Cristal). Using microsatellite analysis of 10 unlinked loci, we found pronounced genetic differentiation among the three major habitats: Arroyo Cristal, El Azufre and the cave. Genetic differentiation was also found within the cave between different pools. An estimation of first-generation migrants suggests that (i) migration is unidirectional, out of the cave, and (ii) migration among different cave chambers occurs to some extent. We investigated if the pattern of genetic differentiation is also reflected in a morphological trait, eye size. Relatively large eyes were found in surface habitats, small eyes in the anterior cave chambers, and the smallest eyes were detected in the innermost cave chamber (XIII). This pattern shows some congruence with a previously proposed morphocline in eye size. However, our data do not support the proposed mechanism for this morphocline, namely that it would be maintained by migration from both directions into the middle cave chambers. This would have led to an increased variance in eye size in the middle cave chambers, which we did not find. Restricted gene flow between the cave and the surface can be explained by local adaptations to extreme environmental conditions, namely H2S and absence of light. Within the cave system, habitat properties are patchy, and genetic differentiation between cave chambers despite migration could indicate local adaptation at an even smaller scale.  相似文献   

14.
Summary Remarkably simple and regular patterns of genic variation for two electrophoretically assayed loci are presented against a background of strong habitat selection, population isolation, and population structuring in the pitcher-plant mosquitoWyeomyia smithii. The genic variation assessed thus far comes from 29 local populations, all but one of which lie within the glaciated region of North America. Although the conclusions drawn from these patterns are still quite tentative, it appears that the fact that the same higher frequency electromorphs occurred everywhere for both loci may be due more to selection than drift. Drift or selection, acting alone or in concert may be responsible for the almost complete absence of electromorphs of intermediate frequency. A weak association was found between the two-locus genic variation and the well-studied diapause-development time variation in this species. It is suggested that a Wrightian interaction system and fluctuating-stabilizing selection might account for maintenance of the genic level polymorphism. The observations reported are circumstantially in accord with Wright's shifting balance process of evolution. Future studies in the older parts of the species range will put these hypotheses to a strong test.  相似文献   

15.
Life history traits within species often vary among different habitats. We measured female fecundity in mollies (Poecilia mexicana) from a H2S-rich cave and from a neighbouring surface habitat, as well as in laboratory-reared individuals of both populations raised in either light or continuous darkness. Compared to conspecifics from surface habitats, cave-dwelling P. mexicana had reduced fecundity (adjusted for size) in the field. In the laboratory, the fecundity of surface mollies was higher in light than in darkness, whereas fecundity in the cave mollies was almost unaffected by the ambient light conditions. Our results suggest a heritable component to the reduction in fecundity in female cave mollies. Moreover, the reduced plasticity in fecundity of cave mollies in response to light conditions might be an example of genetic assimilation or channelling of a life history trait in a population invading a new environment.  相似文献   

16.
* Here we explore life history differences in a set of neighbouring metallicolous and nonmetallicolous populations of the heavy metal tolerant plant Thlaspi caerulescens. * We contrasted data from field observations and from a common garden experiment, in which soil zinc (Zn) concentration and light availability were manipulated, and data on microsatellite molecular variation. * The two ecotypes showed few differences in life history in the field, but large differences in their response to Zn concentration in the common garden. Soil toxicity affected most characters in nonmetallicolous plants, while it had no effect on metallicolous plants. The two ecotypes responded similarly to light. Genetic differentiation for quantitative characters between ecotypes contrasted with the absence of differentiation for microsatellites. Conversely, populations of the same ecotype showed similar responses to Zn, despite their high differentiation for molecular markers. * We conclude that divergent selection related to soil toxicity has had a predominant role in shaping life history differences between ecotypes, gene flow weakly opposing local adaptation despite geographical proximity.  相似文献   

17.

Background and Aims

Populations established by long-distance colonization are expected to show low levels of genetic variation per population, but strong genetic differentiation among populations. Whether isolated populations indeed show this genetic signature of isolation depends on the amount and diversity of diaspores arriving by long-distance dispersal, and time since colonization. For ferns, however, reliable estimates of long-distance dispersal rates remain largely unknown, and previous studies on fern population genetics often sampled older or non-isolated populations. Young populations in recent, disjunct habitats form a useful study system to improve our understanding of the genetic impact of long-distance dispersal.

Methods

Microsatellite markers were used to analyse the amount and distribution of genetic diversity in young populations of four widespread calcicole ferns (Asplenium scolopendrium, diploid; Asplenium trichomanes subsp. quadrivalens, tetraploid; Polystichum setiferum, diploid; and Polystichum aculeatum, tetraploid), which are rare in The Netherlands but established multiple populations in a forest (the Kuinderbos) on recently reclaimed Dutch polder land following long-distance dispersal. Reference samples from populations throughout Europe were used to assess how much of the existing variation was already present in the Kuinderbos.

Key Results

A large part of the Dutch and European genetic diversity in all four species was already found in the Kuinderbos. This diversity was strongly partitioned among populations. Most populations showed low genetic variation and high inbreeding coefficients, and were assigned to single, unique gene pools in cluster analyses. Evidence for interpopulational gene flow was low, except for the most abundant species.

Conclusions

The results show that all four species, diploids as well as polyploids, were capable of frequent long-distance colonization via single-spore establishment. This indicates that even isolated habitats receive dense and diverse spore rains, including genotypes capable of self-fertilization. Limited gene flow may conserve the genetic signature of multiple long-distance colonization events for several decades.  相似文献   

18.
1. The effects of habitat isolation, persistence, and host‐plant structure on the incidence of dispersal capability (per cent macroptery) in populations of the delphacid planthopper Toya venilia were examined throughout the British Virgin Islands. The host plant of this delphacid is salt grass Sporobolus virginicus, which grows either in undisturbed habitats (large expanses on intertidal salt flats and around the margins of salt ponds, or small patches of sparse vegetation on sand dunes along the shore), or in less persistent, disturbed habitats (managed lawns). 2. Both sexes of T. venilia were significantly more macropterous in disturbed habitats (77.1% in males, 12.5% in females) than in more persistent, undisturbed habitats (19.2% in males, < 1% in females). 3. Males exhibited significantly higher levels of macroptery (26.9 ± 7.6%) than did females (2.0 ± 1.7%), and per cent macroptery was positively density dependent for both sexes in field populations. 4. There was no evidence that the low incidence of female macroptery in a subset of island populations inhabiting natural habitats (1.7 ± 1.2%) was attributable to the effects of isolation on oceanic islands. The incidence of macroptery in British Virgin Island populations of T. venilia was not different from that observed in mainland delphacid species existing in habitats of similar duration. 5. Rather, the persistence of most salt grass habitats throughout the British Virgin Islands best explains the evolution of flight reduction in females of this island‐inhabiting delphacid. 6. Males were significantly more macropterous in populations occupying dune vegetation (37.6 ± 9.8%) than in populations occupying salt flat–pond margin habitats (7.6 ± 5.6%). By contrast, females exhibited low levels of macroptery in both dune (0%) and salt flat–pond margin (< 1%) habitats. Variation in salt‐grass structure probably underlies this habitat‐related difference in macroptery because flight‐capable males of planthoppers are better able to locate females in the sparse‐structured grass growing on dunes. This habitat‐related difference in male macroptery accounted for the generally higher level of macroptery observed in males than in females throughout the islands. 7. The importance of habitat persistence and structure in explaining the incidence of dispersal capability in T. venilia is probably indicative of the key role these two factors play in shaping the dispersal strategies of many insects.  相似文献   

19.
Carabidologists do it all’ (Niemelä 1996a) is a phrase with which most European carabidologists are familiar. Indeed, during the last half a century, professional and amateur entomologists have contributed enormously to our understanding of the basic biology of carabid beetles. The success of the field is in no small part due to regular European Carabidologists’ Meetings, which started in 1969 in Wijster, the Netherlands, with the 14th meeting again held in the Netherlands in 2009, celebrating the 40th anniversary of the first meeting and 50 years of long-term research in the Dwingelderveld. This paper offers a subjective summary of some of the major developments in carabidology since the 1960s. Taxonomy of the family Carabidae is now reasonably established, and the application of modern taxonomic tools has brought up several surprises like elsewhere in the animal kingdom. Progress has been made on the ultimate and proximate factors of seasonality and timing of reproduction, which only exceptionally show non-seasonality. Triggers can be linked to evolutionary events and plausibly explained by the “taxon cycle” theory. Fairly little is still known about certain feeding preferences, including granivory and ants, as well as unique life history strategies, such as ectoparasitism and predation on higher taxa. The study of carabids has been instrumental in developing metapopulation theory (even if it was termed differently). Dispersal is one of the areas intensively studied, and results show an intricate interaction between walking and flying as the major mechanisms. The ecological study of carabids is still hampered by some unresolved questions about sampling and data evaluation. It is recognised that knowledge is uneven, especially concerning larvae and species in tropical areas. By their abundance and wide distribution, carabid beetles can be useful in population studies, bioindication, conservation biology and landscape ecology. Indeed, 40 years of carabidological research have provided so much data and insights, that among insects - and arguably most other terrestrial organisms - carabid beetles are one of the most worthwhile model groups for biological studies.  相似文献   

20.
Patterns and levels of genetic diversity mayhave significant influence on the long termpersistence of local populations and revealingsuch information is important in protectingrare species. In this study we investigated thegenetic pattern in five microsatellite lociwithin five Swedish populations of the rareorchid species Gymnadenia odoratissima. Thegeographic distribution of G. odoratissima isrestricted to Europe and in Scandinavia it isonly found in three provinces in southernSweden; Östergötland,Västergötland and on the island ofGotland.Compared with the more widespread congener G.conopsea our results indicate lower levels ofgenetic variation within and higher degrees ofgenetic differentiation among populations ofG. odoratissima (HEL = 0.6–0.8 in G. conopseaand 0.3–0.7 in G. odoratissima; FST over allpopulations = 0.06 in G. conopsea and 0.19 inG. odoratissima). Also, we found a cleardistinction among mainland and islandpopulations of G. odoratissima wherepopulations on the island of Gotland seem toexhibit higher levels of gene flow andintragenetic variation, probably as a result ofa larger number of existing populations.Future conservation of this species shouldfocus on facilitation on colonisation events,especially on the mainland, and preservation ofthe genetically more variable Gotlandpopulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号