首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complementation of insertion mutants showed that the polypeptides FatD, FatC, FatB, and FatA are essential for the iron-transport process encoded by pJM1. Sequence analysis followed by homology studies indicated that transport of ferric anguibactin into Vibrio anguillarum 775 follows the same mechanism as reported for transport of Fe(3+)-hydroxamates, Fe(3+)-catecholates, ferric dicitrate, and vitamin B12 into Escherichia coli. Homology of FatA, part of the receptor complex, to seven E. coli receptor proteins involved in uptake of siderophores and vitamin B12 supports the idea of a common ancestral gene. A "TonB-Box" was found in FatA suggesting the existence of a TonB-like protein function in V. anguillarum. A high homology in the primary structure of FatB to FhuD, FecB, FepB, and BtuE suggests that FatB is the anguibactin-binding protein located in the periplasmic space. FatD and FatC are polytopic integral membrane proteins. According to their homologies to other proteins from other transport systems, they may be involved in the translocation of ferric anguibactin across the cytoplasmic membrane.  相似文献   

2.
Iron uptake system medicated by Vibrio anguillarum plasmid pJM1.   总被引:11,自引:10,他引:11       下载免费PDF全文
Plasmid pJM1 from an invasive strain of Vibrio anguillarum mediates an iron-sequestering system that is associated with the ability of this bacterium to cause septicemia in marine fishes. This plasmid-mediated iron uptake system was analyzed by using mutations caused by transposon Tnl. Restriction endonuclease analysis of iron uptake-deficient and -proficient derivatives generated by insertion of Tnl and molecular cloning experiments permitted us to localize the plasmid regions involved in the process of iron sequestration to a stretch of about 20 kilobase pairs. In addition, the existence of two plasmid-mediated components involved in the process of iron uptake in V. anguillarum was defined: a diffusible substance which functions as a siderophore and a nondiffusible receptor for complexes of iron-siderophore, which we have tentatively identified as the pJM1 plasmid-mediated outer membrane protein OM2 of V. anguillarum.  相似文献   

3.
Anguibactin, a siderophore produced by cells of Vibrio anguillarum 775 harboring the pJM1 plasmid, has now been isolated from the supernatants of iron-deficient cultures. This iron-reactive material was purified by adsorption onto an XAD-7 resin and subsequent gel filtration on a Sephadex LH-20 column. The resulting neutral compound produced an ion at m/z 348 in mass spectrometry and contained one sulfur, four oxygen, and four nitrogen atoms as determined by elemental analysis. Its strong UV absorbance and blue fluorescence were suggestive of a phenolic moiety. In colorimetric reactions anguibactin behaved like a catechol. The catechol assignment was supported by the appearance of a new absorption band at 510 nm in the ferric complex and by the appearance of peaks at 1,367, 1,447, 1,469, and 1,538 cm-1 in the resonance Raman spectrum. In addition, the infrared spectrum gave evidence of a secondary amide function, but no free carboxylic acid or hydroxamic acid groups were observed. A third iron-ligating group was suggested by the liberation of three protons during iron binding; mass spectrometry of the resulting material yielded a molecular ion characteristic of a 1:1 complex of ferric anguibactin. The purified anguibactin exhibited specific growth-promoting activity under iron-limiting conditions for a siderophore-deficient mutant of V. anguillarum 775(pJM1). A novel structure for anguibactin was indicated by the failure of a large number of known siderophores and synthetic chelators to yield a similar type of specific cross-feeding in the V. anguillarum bioassay.  相似文献   

4.
The virulence plasmid pJM1 enables the fish pathogen Vibrio anguillarum, a gram-negative polarly flagellated comma-shaped rod bacterium, to cause a highly fatal hemorrhagic septicemic disease in salmonids and other fishes, leading to epizootics throughout the world. The pJM1 plasmid 65,009-nucleotide sequence, with an overall G+C content of 42.6%, revealed genes and open reading frames (ORFs) encoding iron transporters, nonribosomal peptide enzymes, and other proteins essential for the biosynthesis of the siderophore anguibactin. Of the 59 ORFs, approximately 32% were related to iron metabolic functions. The plasmid pJM1 confers on V. anguillarum the ability to take up ferric iron as a complex with anguibactin from a medium in which iron is chelated by transferrin, ethylenediamine-di(o-hydroxyphenyl-acetic acid), or other iron-chelating compounds. The fatDCBA-angRT operon as well as other downstream biosynthetic genes is bracketed by the homologous ISV-A1 and ISV-A2 insertion sequences. Other clusters on the plasmid also show an insertion element-flanked organization, including ORFs homologous to genes involved in the biosynthesis of 2,3-dihydroxybenzoic acid. Homologues of replication and partition genes are also identified on pJM1 adjacent to this region. ORFs with no known function represent approximately 30% of the pJM1 sequence. The insertion sequence elements in the composite transposon-like structures, corroborated by the G+C content of the pJM1 sequence, suggest a modular composition of plasmid pJM1, biased towards acquisition of modules containing genes related to iron metabolic functions. We also show that there is considerable microheterogeneity in pJM1-like plasmids from virulent strains of V. anguillarum isolated from different geographical sources.  相似文献   

5.
Studies involving the introduction of cloned homologous genes into Vibrio anguillarum revealed that several plasmids could not be conjugally introduced into V. anguillarum 775(pJM1), but were transmissible to the pJM1-cured derivative H775-3. Recombinant pBR322 plasmids containing V. anguillarum genomic DNA inserts were mobilized from Escherichia coli donors, using pRK2013, into V. anguillarum H775-3 recipients at frequencies of 10(-6) to 10(-5) per recipient. When identical matings were performed with V. anguillarum 775(pJM1) recipients, the infrequent exconjugants recovered carried the pBR322-based plasmid but had lost the large virulence plasmid pJM1. Similar studies were carried out with plasmid RP4 and with recombinant derivatives of the closely related broad-host-range plasmid pRK290. While RP4 was transmissible from E. coli to V. anguillarum H775-3 at frequencies of 6.7 x 10(-2) per recipient, transmission to V. anguillarum 775(pJM1) recipients occurred at frequencies of only 2.5 x 10(-7). When pRK290 contained V. anguillarum DNA inserts, the only exconjugants recovered had lost pJM1, or contained pJM1 and a deletion derivative of the recombinant pRK290 plasmid where all of the DNA insert had been deleted. The use of Dam-, Dcm-, or EcoK- methylation-deficient E. coli donor strains failed to result in appreciable numbers of V. anguillarum 775(pJM1) exconjugants that contained the desired transferred plasmids. Following UV mutagenesis, a derivative of V. anguillarum 775(pJM1) was isolated that would accept conjugally transferred plasmid DNAs at frequencies similar to those observed when using V. anguillarum H775-3 recipients. These data suggest that virulence plasmid pJM1 mediates a restriction system that prevents conjugal transmission of plasmid DNA from E. coli donors into V. anguillarum 775(pJM1). This putative restriction system appears not to be directed towards Dam-, Dcm-, or EcoK-methylated DNA, and appears not to involve a Type II restriction endonuclease.  相似文献   

6.
Vibrio anguillarum 775 harboring the virulence plasmid pJM1 synthesized an outer membrane protein of 86 kilodaltons, OM2, that was inducible under conditions of iron limitation. pJM1 DNA fragments obtained by digestion with restriction endonucleases were cloned into cosmid vectors and transferred into Escherichia coli. The OM2 protein was synthesized in E. coli, demonstrating that it is actually encoded by the pJM1 plasmid. Mobilization of the recombinant plasmids to V. anguillarum was accomplished by using the transfer factor pRK2013. A V. anguillarum exconjugant harboring the recombinant derivative pJHC-T7 and synthesizing the OM2 protein took up 55Fe3+ and grew under iron-limiting conditions, only in presence of the pJM1-mediated siderophore. Exconjugants harboring recombinant plasmids, such as pJHC-T2 which did not encode the OM2 protein, were transport negative. Membrane protein iodination experiments, together with protease treatment of whole cells, indicated that the OM2 protein is exposed to the outside environment of the V. anguillarum cells.  相似文献   

7.
Plasmid pJM1 from an invasive strain of Vibrio anguillarum encodes an iron uptake system which mediates the biosynthesis of a siderophore and a membrane receptor for the iron-siderophore complex. This system has been associated with the ability of V. anguillarum to cause hemorrhagic septicemic disease in marine fish. Recombinant derivatives containing essential regions of the pJM1-mediated iron uptake system cloned into cosmid vector pVK102 were introduced into low-virulence iron uptake-deficient V. anguillarum strains by using a trifactor mating procedure with helper plasmid pRK2013. Three recombinant clones, pJHC-T7, pJHC-T11, and pJHC-T2612, possessed genetic determinants for receptor activity. Production of receptor activity was correlated in all three cases with the presence of OM2, an 86-kilodalton outer membrane protein which was induced under iron-limiting conditions. Two of the clones, pJHC-T7 and pJHC-T2612, also coded for the production of siderophore activity, although at a much lower level than the wild type. Strains harboring either of these two clones were still unable to grow under iron-limiting conditions. This inability was overcome only when other indigenous pJM1 derivatives were present in the cells in addition to the recombinant cosmids. This restoration of high siderophore production and ability to grow under iron-limiting conditions was achieved even when the indigenous plasmids possessed lesions in genes involved in siderophore activity or in both siderophore and receptor production. Thus, another function mediated by plasmid pJM1, possibly a transacting factor, may play a role in the regulation of siderophore production. Results of experimental infections demonstrated that restoration of the ability to grow under conditions of iron limitations by introduction of an recombinant clone into one of the low-virulence V. anguillarum strains was correlated with an increase in bacterial pathogenicity.  相似文献   

8.
9.
Vibrio strains isolated from diseased turbot in an experimental fish farm on the Atlantic coast of northwest Spain were identified as Vibrio anguillarum. The isolates shared many biochemical characteristics with V. anguillarum strains obtained from other sources, and harboured a plasmid species that showed extensive homology with plasmid pJM1, carried by V. anguillarum strain 775 isolated from an epizootic in North America. Restriction endonuclease analysis showed that the two plasmids were very similar albeit not identical. The presence of the plasmid in the turbot isolates was associated with their ability to cause disease in fish. Plasmid-carrying bacteria could also grow under conditions of iron limitation. Two outer membrane proteins, of 86 and 79 kDal, were induced, and a similar siderophore activity to that produced by V. anguillarum 775 was also detected under these conditions. The 86 kDal outer membrane protein cross-reacted immunologically with antiserum raised against the outer membrane protein OM2 produced by strain 775. Nonvirulent plasmidless derivatives were unable to grow under iron-limiting conditions, and were also unable to produce either siderophore activity or the 86 kDal outer membrane protein, suggesting the plasmid-mediated nature of these components.  相似文献   

10.
We report here that Vibrio anguillarum possesses a non-inducible active transport system which can efficiently supply iron to the cell from ferric citrate, independently of the siderophore-based mechanisms. The strains tested were able to grow in CM9 medium in iron-restricted conditions when ferric citrate was present in the medium. Moreover, the presence of ferric citrate inhibited the production of siderophores in the strains tested. V. anguillarum cells and isolated membranes could incorporate 55Fe3+ complexed by citrate, without a difference between cells grown in the presence or absence of ferric citrate. The presence of 2,4-dinitrophenol, ferrozine, ferricyanide, trypsin, as well as low temperature produced a marked decrease or total inhibition of 55Fe3+ uptake by the cells. All these results suggest that iron uptake from ferric citrate in V. anguillarum must be an energy-dependent process not induced by the presence of iron or citrate in the medium, mediated by a membrane protein(s), which may require an iron reduction step to function.  相似文献   

11.
We describe in this work a new iron uptake system encoded by chromosomal genes in pathogenic strains of Vibrio anguillarum. This iron uptake system differs from the plasmid-encoded anguibactin-mediated system present in certain strains of V. anguillarum in several properties. The siderophore anguibactin is not utilized as an external siderophore, and although characteristic outer membrane proteins are synthesized under iron-limiting conditions, these are not related to the plasmid-mediated outer membrane protein OM2 associated with ferric anguibactin transport. Furthermore, the siderophore produced by the plasmidless strains may be functionally related to enterobactin as demonstrated by bioassays with enterobactin-deficient mutants, although its behavior under various chemical treatments suggested major differences from that siderophore. Hybridization experiments suggested that the V. anguillarum chromosome-mediated iron uptake system is unrelated genetically to either the anguibactin or enterobactin-associated iron assimilation systems.  相似文献   

12.
13.
The recA analog from Vibrio anguillarum 775 was isolated by complementation of recA mutations in Escherichia coli, and its protein product was identified. The recA analog promoted recombination between two partially deleted lactose operons, stimulated both spontaneous and mitomycin C-induced phage production in RecA- lambda lysogens, and restored near wild-type levels of resistance to UV radiation and methyl methanesulfonate.  相似文献   

14.
15.
Vibrio anguillarum is a fish pathogen that causes vibriosis, a serious hemorrhagic septicemia, in wild and cultured fish. Many serotype O1 strains of this bacterium harbor the 65kb plasmid pJM1 carrying the majority of genes encoding the siderophore anguibactin iron transport system that is one of the most important virulence factors of this bacterium. We previously identified a replication region of the pJM1 plasmid named ori1. In this work we determined that ori1 can replicate in Escherichia coli and that the chromosome-encoded proteins DnaB, DnaC and DnaG are essential for its replication whereas PolI, IHF and DnaA are not required. The copy number of the pJM1 plasmid is 1-2, albeit cloned smaller fragments of the ori1 region replicate with higher copy numbers in V. anguillarum while in E. coli we did not observe an obvious difference of the copy numbers of these constructs which were all high. Furthermore, we were able to delete the ori1 region from the pJM1 plasmid and identified a second replication region in pJM1 that we named ori2. This second replication region is located on ORF25 that is within the trans-acting factor (TAFr) region, and showed that it can only replicate in V. anguillarum.  相似文献   

16.
Insertions were created in three iron uptake genes in plasmid pJM1 of Vibrio anguillarum 775 to assess their in vivo effects on virulence in fish. Insertions that blocked p40, pOM2, and pAngR expression resulted in iron uptake-negative strains and in 4.2 x 10(5)-, 8.8 x 10(5)-, and 2.5 x 10(5)-fold attenuations in virulence, respectively. A strain with an insertion in the pAngR coding region still synthesized significant constitutive levels of the outer membrane protein pOM2 and persisted in fish for at least 14 days postinjection. The results demonstrate a direct relationship between virulence and three pJM1-encoded gene products and also the feasibility of constructing live attenuated strains of V. anguillarum that might be useful in future vaccines.  相似文献   

17.
Previously, the flagellar filament of Vibrio anguillarum was suggested to consist of flagellin A and three additional flagellin proteins, FlaB, -C, and -D. This study identifies the genes encoding FlaB, -C, and -D and a possible fifth flagellin gene that may encode FlaE. The flagellin genes map at two separate DNA loci and are most similar to the four polar flagellin genes of Vibrio parahaemolyticus, also located at two DNA loci. The genetic organization of these two loci is conserved between both organisms. For each gene, in-frame deletions of the entire gene, the 5' end, and the 3' end were made. Mutant analysis showed that each mutation, except those in flaE, caused a loss of flagellin from the filament. However, no obvious structural loss in the filament, as determined by electron microscopy, and only slight decreases in motility were seen. Virulence analysis indicated that all but two of the mutations gave a wild-type phenotype. The 5'-end deletions of flaD and flaE decreased virulence significantly (>10(4)-fold) of infections via both the intraperitoneal and immersion routes. These results indicate that, like FlaA, FlaD and FlaE may also be involved in virulence.  相似文献   

18.
We investigated the incidence of plasmid-mediated and chromosome-mediated iron uptake systems in strains of Vibrio anguillarum that belong to serotypes O1 and O2 and were isolated from different fish species and in different geographic areas. All of the strains gave positive reactions in CAS agar medium and in the Arnow test, which indicated that catechol types of siderophores were produced. The majority of V. anguillarum serotype O1 strains harbored a 65-kb plasmid similar to plasmid pJM1 from strain 775, which encodes the siderophore anguibactin and its outer membrane receptor, protein OM2. All of the isolates harboring this plasmid promoted the growth of an anguibactin-deficient receptor-proficient mutant derived from strain 775, but none of these isolates promoted the growth of mutants lacking receptor OM2. Furthermore, under iron-limiting conditions all of these strains induced outer membrane proteins that were identical in size to protein OM2 of strain 775. In contrast, none of the serotype O2 strains contained a high-molecular-weight plasmid, but all of them induced the growth of mutants defective in the anguibactin-mediated system regardless of the presence or absence of receptor OM2. The serotype O2 strains, but not the plasmid-bearing serotype O1 strains, also induced the growth of Salmonella typhimurium enb-1 which utilizes only enterobactin as a siderophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We investigated the incidence of plasmid-mediated and chromosome-mediated iron uptake systems in strains of Vibrio anguillarum that belong to serotypes O1 and O2 and were isolated from different fish species and in different geographic areas. All of the strains gave positive reactions in CAS agar medium and in the Arnow test, which indicated that catechol types of siderophores were produced. The majority of V. anguillarum serotype O1 strains harbored a 65-kb plasmid similar to plasmid pJM1 from strain 775, which encodes the siderophore anguibactin and its outer membrane receptor, protein OM2. All of the isolates harboring this plasmid promoted the growth of an anguibactin-deficient receptor-proficient mutant derived from strain 775, but none of these isolates promoted the growth of mutants lacking receptor OM2. Furthermore, under iron-limiting conditions all of these strains induced outer membrane proteins that were identical in size to protein OM2 of strain 775. In contrast, none of the serotype O2 strains contained a high-molecular-weight plasmid, but all of them induced the growth of mutants defective in the anguibactin-mediated system regardless of the presence or absence of receptor OM2. The serotype O2 strains, but not the plasmid-bearing serotype O1 strains, also induced the growth of Salmonella typhimurium enb-1 which utilizes only enterobactin as a siderophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号