首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rat serum phosphorylcholine binding protein (PCBP) is characterized by its Ca2+ dependent property to bind phosphorylcholine ligand. PCBP immobilized on sepharose has been shown to selectively bind human plasma apo B and E containing lipoproteins. The present report describes an inhibitory effect of PCBP on the binding of human 125I-LDL to LDL receptors on estradiol treated rat liver membranes. Pre-incubation of liver membranes with PCBP did not affect the binding of 125I-LDL to the membranes. Gel filtration analysis of the incubation products from the LDL-receptor assay showed a concentration dependent binding of 125I-PCBP to LDL. The inhibitory effect of PCBP is likely due to the formation of LDL-PCBP complex and not due to the binding of PCBP to the LDL receptor site.  相似文献   

2.
Movement through the endocytic pathway occurs principally via a series of membrane fusion and fission reactions that allow sorting of molecules to be recycled from those to be degraded. Endosome fusion is dependent on SNARE proteins, although the nature of the proteins involved and their regulation has not been fully elucidated. We found that the endosome-associated hepatocyte responsive serum phosphoprotein (Hrs) inhibited the homotypic fusion of early endosomes. A region of Hrs predicted to form a coiled coil required for binding the Q-SNARE, SNAP-25, mimicked the inhibition of endosome fusion produced by full-length Hrs, and was sufficient for endosome binding. SNAP-25, syntaxin 13, and VAMP2 were bound from rat brain membranes to the Hrs coiled-coil domain. Syntaxin 13 inhibited early endosomal fusion and botulinum toxin/E inhibition of early endosomal fusion was reversed by addition of SNAP-25(150-206), confirming a role for syntaxin 13, and establishing a role for SNAP-25 in endosomal fusion. Hrs inhibited formation of the syntaxin 13-SNAP-25-VAMP2 complex by displacing VAMP2 from the complex. These data suggest that SNAP-25 is a receptor for Hrs on early endosomal membranes and that the binding of Hrs to SNAP-25 on endosomal membranes inhibits formation of a SNARE complex required for homotypic endosome fusion.  相似文献   

3.
Sea anemones produce a family of 18-20 kDa proteins, the actinoporins, which lyse cells by forming pores in cell membranes. Sphingomyelin plays an important role in their lytic activity, with membranes lacking this lipid being largely refractory to these toxins. As a means of characterising membrane binding by the actinoporin equinatoxin II (EqTII), we have used 19F NMR to probe the environment of Trp residues in the presence of micelles and bicelles. Trp was chosen as previous data from mutational studies and truncated analogues had identified the N-terminal helix of EqTII and the surface aromatic cluster including tryptophan residues 112 and 116 as being important for membrane interactions. The five tryptophan residues were replaced with 5-fluorotryptophan and assigned by site-directed mutagenesis. The 19F resonance of W112 was most affected in the presence of phospholipid micelles or bicelles, followed by W116, with further change induced by the addition of sphingomyelin. Although binding to phosphatidylcholine is not sufficient to enable pore formation in bilayer membranes, this interaction had a greater effect on the tryptophan residues in our studies than the subsequent interaction with sphingomyelin. Furthermore, sphingomyelin had a direct effect on EqTII in both model membranes, so its role in EqTII pore formation involves more than simply an indirect effect mediated via bulk lipid properties. The lack of change in chemical shift for W149 even in the presence of sphingomyelin indicates that, at least in the model membranes studied here, interaction with sphingomyelin was not sufficient to trigger dissociation of the N-terminal helix from the beta-sandwich, which forms the bulk of the protein.  相似文献   

4.
Phosphorylation of proteins appears as a key process in early steps of clathrin coated vesicle formation. Here, we report that treatment of post-nuclear fraction with alkaline phosphatase induced redistribution of alpha subunits of AP-2 adaptor complex to cytosol and this effect was higher in the alpha2 subunit. A high serine phosphorylation status of alpha subunits correlated with the higher affinity of AP-2 to membranes. Using a simple binding assay, where membranes were incubated with either purified adaptors or cytosols, we observed an inhibitory effect of tyrphostin, a tyrosine kinase inhibitor, on the binding of AP-2 to membranes, but also an unexpected decrease induced by the phosphatase inhibitor cyclosporine. We also show an inhibitory effect of ATP mediated by cytosolic proteins, although it could not be related to the phosphorylation of AP-2, suggesting an action upstream a cascade of phosphorylations that participate in the regulation of the assembly of AP-2 to membranes.  相似文献   

5.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

6.
The ability of bovine corpus luteum plasma membranes to bind 125I-choriogonadotropin has been examined after prior treatment of the membranes with phospholipases A, C, and D. Treatment of the purified membranes with low concentrations of phospholipases A and C resulted in the inhibition of the binding of 125I-choriogonadotropin to its receptors, whereas phospholipase D had no effect. Receptor activity was decreased by low concentrations of phospholipase A from either bee venom, Vipera russelli or Crotalus terrificus terrificus. Similarly, low concentrations of phospholipase C from Clostridium perfringens and Clostridium welchii also inhibited the binding activity while comparatively higher concentrations of phospholipase C from Bacillus cereus were required to achieve comparable inhibition. The time required to produce 50% inhibition of in vitro binding by phospholipases A and C was found to be 6 and 23 min, respectively. Upon either removal or chelation of calcium ions by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) both enzymes were completely inhibited as evidenced by the complete retention of the membrane binding activity. The decrease in the specific binding of choriogonadotropin to membranes after phospholipase digestion resulted in a decrease in the number of binding sites and was not accompanied by a change in the affinity of the hormone-receptor complex. The rates of association and dissociation of the 125I-choriogonadotropin-receptor complex and the equilibrium dissociation constant (Kd) were nearly identical in untreated and phospholipase-treated membranes. Phospholipases did not have any effect on the preformed hormone-receptor complex or on solubilized receptor. Filtration through Sepharose 6B of solubilized 125I-choriogonadotropin-receptor complex from untreated membranes or membranes which had been pretreated with phospholipase C prior to carrying out hormone binding did not alter the profile (Kav 0.38). Gel filtration of membranes treated with phospholipase A showed two peaks of bound radioactivity with distribution coefficients (Kav) of 0.08 and 0.35, respectively.  相似文献   

7.
Amyloid fibrils are associated with multiple neurodegenerative disorders, such as Alzheimer's disease. Although biological membranes are involved in fibril plaque formation, the role of lipid membrane composition in fibril formation and toxicity is not well understood. We investigated the effect of cholesterol on the interaction of model lipid membranes with amyloid-β peptide (Aβ). With atomic force microscopy we demonstrated that binding of Aβ (1-42) to DOPC bilayer, enriched with 20% cholesterol, resulted in an intriguing formation of small nonuniform islands loaded with Aβ. We attribute this effect to the presence of nanoscale electrostatic domains induced by cholesterol in DOPC bilayers. Using frequency-modulated Kelvin probe force microscopy we were able to resolve these nanoscale electrostatic domains in DOPC monolayers. These findings directly affect our understanding of how the presence of cholesterol may induce targeted binding of amyloid deposits to biomembranes. We postulate that this nonhomogeneous electrostatic effect of cholesterol has a fundamental nature and may be present in other lipid membranes and monolayers.  相似文献   

8.
The plasma membranes of endothelial cells reaching confluence undergo profound structural and functional modifications, including the formation of adherens junctions, crucial for the regulation of vascular permeability and angiogenesis. Adherens junction formation is accompanied by the tyrosine dephosphorylation of adherens junctions proteins, which has been correlated with the strength and stability of adherens junctions. Here we show that cholesterol is a critical determinant of plasma membrane remodeling in cultures of growing cow pulmonary aortic endothelial cells. Membrane cholesterol increased dramatically at an early stage in the formation of confluent cow pulmonary aortic endothelial cell monolayers, prior to formation of intercellular junctions. This increase was accompanied by the redistribution of caveolin from a high density to a low density membrane compartment, previously shown to require cholesterol, and increased binding of the annexin II-p11 complex to membranes, consistent with other studies indicating cholesterol-dependent binding of annexin II to membranes. Furthermore, partial depletion of cholesterol from confluent cells with methyl-beta-cyclodextrin both induced tyrosine phosphorylation of multiple membrane proteins, including adherens junctions proteins, and disrupted adherens junctions. Both effects were dramatically reduced by prior complexing of methyl-beta-cyclodextrin with cholesterol. Our results reveal a novel physiological role for cholesterol regulating the formation of adherens junctions and other plasma membrane remodeling events as endothelial cells reach confluence.  相似文献   

9.
Magainin 2, a polycationic peptide, displays bactericidal and tumoricidal activity, presumably interacting with negatively charged phospholipids in the membrane hosts. In this work, we investigate the role played by the lipid head-group in the interactions and self-association of magainin 2 during pore formation in lipid bilayers. Two methods are used: single-channel and macroscopic incorporation into planar lipid membranes. Single-channel incorporation showed that magainin 2 did not interact with zwitterionic membranes, while the addition of negatively charged dioleoylphosphatidylglycerol to the membrane leads to channel formation. On the other hand, magainin 2 did not form channels in membranes made up of dioleoylphosphatidylserine (DOPS), although the addition of ergosterol to DOPS membranes leads to channel formation. This finding could indicate that ergosterol may be a possible target of magainin 2 in fungal membranes. Further support for this hypothesis comes from experiments in which the addition of ergosterol to palmitoyloleoylphosphatidylcholine membranes induced channel formation. Besides the role of negatively charged membranes, this study has shown that magainin 2 also forms channels in membranes lacking heads, such as monoolein and oxidized cholesterol, indicating an interaction of magainin 2 with acyl chains and cholesterol, respectively. This finding provides further evidence that peptide binding and assembly in lipid membranes is a complex process driven by electrostatic and/or hydrophobic interactions, depending on the structure of the peptide and the membrane composition.  相似文献   

10.
C4b-binding protein (C4BP) is a large complex assembly of eight subunits that functions as an inhibitor of the complement cascade. A portion of the C4BP in serum exists as a complex with protein S. This study demonstrated that another protein, serum amyloid P component (SAP), also formed a calcium-dependent complex with C4BP. The C4BP.SAP complex was detected by several methods including light scattering intensity, gel filtration, and sucrose density gradient ultracentrifugation. This complex was of high affinity relative to serum levels of these proteins so that no dissociation was detected at 3% of serum protein concentrations. The C4BP.SAP complex was also detected in normal serum and the results suggested that there was virtually no free SAP or uncomplexed C4BP in normal serum. In addition to its complex with C4BP, SAP underwent other calcium-dependent associations such as binding to phospholipid vesicles and self-aggregation. Self-aggregation was highly cooperative with kinetics corresponding to a reaction that was 6th-order with respect to calcium and required about 1.5 mM calcium. In contrast, formation of the SAP.C4BP complex and interaction of SAP with membranes required only about 0.4 and 1.0 mM calcium, respectively. Thus, selection of the correct conditions allowed study of the SAP.C4BP interaction without interference from self-aggregation. All three of these interactions of SAP were mutually exclusive and the SAP. C4BP interaction appeared to be favored over self-aggregation or binding of SAP to phospholipids. It seems likely that the biologically dominant interaction for SAP is with C4BP. The SAP.C4BP complex interacted with protein S and these binding sites appeared to be entirely independent. Furthermore, SAP had little or no effect on the ability of C4BP to bind C4b. Finally, the entire complex of proteins (C4BP, SAP, protein S, and C4b) could associate with membranes in the presence of calcium. Membrane binding occurred through the protein S component. This rather complicated assemblage of proteins probably functions in a regulatory role for the complement cascade or other biological systems. It is possible that elevated levels of SAP or nonequivalent levels of SAP and C4BP could contribute to certain pathological conditions.  相似文献   

11.
The character of the isotherms of specific adsorption of peripheral enzymes to dimeric anchor proteins embedded in the membrane has been analysed. The situations are discussed when adsorption corresponds to the stoichiometry of one or two molecules of peripheral enzyme per dimeric binding site. The corresponding expressions describing the competitive interrelationships between peripheral enzymes adsorbed to the same binding sites have been derived. The experimental data on the adsorption of glycolytic enzymes to erythrocyte membranes are used for the illustration of the theoretical predictions. The physiological role of enzyme self-association which leads to the formation of enzyme oligomers of unlimited length is discussed. It is assumed that under in vivo conditions the association sites of such enzymes are saturated through interactions with anchor proteins of subcellular structures and with the enzymes of the corresponding metabolic pathways. Therefore the linearly associating enzymes play the key role in the formation of multienzyme complexes attached to subcellular structures. The significance of 6-phosphofructokinase adsorption to erythrocyte membranes in the formation of the complex of glycolytic enzymes is discussed.  相似文献   

12.
Atg18 is essential for both autophagy and the regulation of vacuolar morphology. The latter process is mediated by phosphatidylinositol 3,5-bisphosphate binding, which is dispensable for autophagy. Atg18 also binds to phosphatidylinositol 3-phosphate (PtdIns(3)P) in vitro. Here, we investigate the relationship between PtdIns(3)P-binding of Atg18 and autophagy. Using an Atg18 variant, Atg18(FTTG), which is unable to bind phosphoinositides, we found that PtdIns(3)P binding of Atg18 is essential for full activity in both selective and nonselective autophagy. Atg18(FTTG) formed a complex with Atg2 in a normal manner, and Atg18-Atg2 complex formation occurred in cells in the absence of PtdIns(3)P, indicating that Atg18-Atg2 complex formation is independent of PtdIns(3)P-binding of Atg18. Atg18 localized to endosomes, the vacuolar membrane, and autophagic membranes, whereas Atg18(FTTG) did not localize to these structures. The localization of Atg2 to autophagic membranes was also lost in Atg18(FTTG) cells. These data indicate that PtdIns(3)P-binding of Atg18 is involved in directing the Atg18-Atg2 complex to autophagic membranes. Connection of a 2xFYVE domain, a specific PtdIns(3)P-binding domain, to the C terminus of Atg18(FTTG) restored the localization of Atg18-Atg2 to autophagic membranes and full autophagic activity, indicating that PtdIns(3)P-binding by Atg18 is dispensable for the function of the Atg18-Atg2 complex but is required for its localization. This also suggests that PtdIns(3)P does not act allosterically on Atg18. Taken together, Atg18 forms a complex with Atg2 irrespective of PtdIns(3)P binding, associates tightly to autophagic membranes by interacting with PtdIns(3)P, and plays an essential role.  相似文献   

13.
Purified mitochondrial creatine kinase (Mi-CK) (EC 2.7.3.2) from chicken heart was shown to interact simultaneously with purified inner and outer mitochondrial membranes, thereby creating an intermembrane chondrial membranes, thereby creating an intermembrane were purified from rat liver and thus were fully devoid of Mi-CK. Intermembrane contact formation was demonstrated by measuring the binding of inner membrane vesicles to outer membranes spread at the air-water interface. Mi-CK also mediated intermembrane adhesion when membranes formed with total lipid extracts of both membranes were used, pointing to the role of lipids as potential membrane anchors of Mi-CK in the mitochondrial intermembrane space. Other enzymes of the intermembrane space that (like Mi-CK) are also cationic, as well as cytosolic isoenzymes of creatine kinase, failed to induce contact formation. Thus, of the proteins tested, membrane contact formation was specific for Mi-CK. The two oligomeric forms of Mi-CK (octamer and dimer) differed in their ability to mediate intermembrane adhesion, the octamer being more potent. Highly basic peptides, i.e. poly-L-lysines, were shown to strongly interact with membranes formed with lipid extracts of mitochondrial membranes: they both induced intermembrane binding and fusion. Interestingly, the extent of contact formation mediated by poly-L-lysines was lower than that of octameric Mi-CK. The implications of these findings on the function and localization of Mi-CK and on the structure of the mitochondrial intermembrane compartment are discussed.  相似文献   

14.
Interaction of bilirubin with the synaptosomal plasma membrane   总被引:3,自引:0,他引:3  
The interaction of the neurotoxic pigment bilirubin with synaptosomal plasma membrane vesicles (SPMV) isolated from rat brain was investigated. The interaction seems to involve three steps: (a) a rapid formation of an electrostatic complex between bilirubin and polar lipid head groups; (b) a slow inclusion of the pigment into the hydrophobic core of the membrane; and (c) a SPMV-induced bilirubin aggregation, observed when membrane capacity for bilirubin is exceeded. The association constant of the initial complex increased markedly when pH was lowered below 7.4, particularly in SPMV isolated from newborn rats. A preferential binding of bilirubin to pure gangliosides and sphingomyelin was observed, thus suggesting a role for these lipids as first targets of the pigment in the synaptic membrane. The inclusion of bilirubin into the membranes was gradually enhanced when decreasing the pH or the age of the rats from which SPMV were isolated. In addition, membranes from 2-day-old rats have a higher capacity for bilirubin incorporation compared to those from adult rats. Experiments with reconstituted liposomes of varying protein and cholesterol contents suggest that the effect of age may be related to changes in synaptosomal membrane fluidity during development. Our results support the hypothesis that the interaction of bilirubin with the synaptic membrane plays an important role in the molecular mechanisms of bilirubin neurotoxicity.  相似文献   

15.
The neuron-specific protein B-50 has been described as an atypical calmodulin (CaM) binding protein, because the purified protein has a higher affinity for CaM in the absence than in the presence of Ca2+. We have studied CaM binding to endogenous B-50 in native synaptosomal plasma membranes (SPM) and growth cone membranes in order to assess the physiological relevance of the binding. To detect B-50/CaM binding, we used the cross-linker disuccimidyl suberate (DSS) to form a covalent B-50/CaM complex, which is stable on SDS-PAGE. Upon addition of DSS, purified B-50 and calmodulin form a 70-kDa complex in the absence but not in the presence of Ca2+. This complex can be detected by protein staining and on Western blots using anti-B-50 and anti-CaM IgGs. DSS treatment of SPM or growth cone membranes with or without exogenous CaM results in the formation of a 70-kDa B-50/CAM complex detectable only in the absence of Ca2+ with both antibodies. Our results strongly suggest that the binding of CaM to endogenous B-50 in SPM and growth cone membranes is of physiological relevance. CaM binding to B-50 may be an important factor in regulating neurite outgrowth and/or neurotransmitter release.  相似文献   

16.
Excessive superoxide (O(-)(2)) formation is toxic to cells and organisms. O(-)(2) reacts with either iron-sulfur centers or cysteines (Cys) of cytoplasmic proteins. Reactions with membrane proteins, however, have not been fully characterized. In the present studies, the reaction of O(-)(2) with a protein complex that has glutamate/N-methyl-D-aspartate (NMDA) receptor characteristics and with one of the subunits of this complex was examined. Exposure of the complex purified from neuronal membranes and the recombinant glutamate-binding protein (GBP) subunit of this complex to the O(-)(2)-generating system of xanthine (X) plus xanthine oxidase (XO) caused strong inhibition of L-[3H]glutamate binding. Inhibition of glutamate binding to the complex and GBP by O(-)(2) was greater than that produced by H(2)O(2), another product of the X plus XO reaction. Mutation of two cysteine (Cys) residues in recombinant GBP (Cys(190,191)) eliminated the effect of O(-)(2) on L-[3H]glutamate binding. Both S-thiolation reaction of GBP in synaptic membranes with [35S]cystine and reaction of Cys residues in GBP with [3H]NEM were significantly decreased after exposure of membranes to O(-)(2). Inhibition of cysteylation of membrane GBP by O(-)(2) was still observed after iron chelation by desferrioxamine, albeit diminished, and was not altered by the presence of catalase. Overall, the results indicated that GBP exposure to O(-)(2) modified Cys residues in this protein. The modification was not characterized but it was probably that of disulfide formation.  相似文献   

17.
Meher AK  Bal NC  Chary KV  Arora A 《The FEBS journal》2006,273(7):1445-1462
The 6-kDa early secretory antigenic target (ESAT-6) and culture filtrate protein-10 (CFP-10), expressed from the region of deletion-1 (RD1) of Mycobacterium tuberculosis H37Rv, are known to play a key role in virulence. In this study, we explored the thermodynamic and biochemical changes associated with the formation of the 1 : 1 heterodimeric complex between ESAT-6 and CFP-10. Using isothermal titration calorimetry (ITC), we precisely determined the association constant and free energy change for formation of the complex to be 2 x 10(7) M(-1) and -9.95 kcal.mol(-1), respectively. Strikingly, the thermal unfolding of the ESAT-6-CFP-10 heterodimeric complex was completely reversible, with a T(m) of 53.4 degrees C and DeltaH of 69 kcal.mol(-1). Mixing of ESAT-6 and CFP-10 at any temperature below the T(m) of the complex led to induction of helical conformation, suggesting molecular recognition between specific segments of unfolded ESAT-6 and CFP-10. Enhanced biochemical stability of the complex was indicated by protection of ESAT-6 and an N-terminal fragment of CFP-10 from proteolysis with trypsin. However, the flexible C-terminal of CFP-10 in the complex, which has been shown to be responsible for binding to macrophages and monocytes, was cleaved by trypsin. In the presence of phospholipid membranes, ESAT-6, but not CFP-10 and the complex, showed an increase in alpha-helical content and enhanced thermal stability. Overall, complex formation resulted in structural changes, enhanced thermodynamic and biochemical stability, and loss of binding to phospholipid membranes. These features of complex formation probably determine the physiological role of ESAT-6, CFP-10 and/or the complex in vivo. The ITC and thermal unfolding approach described in this study can readily be applied to characterization of the 11 other pairs of ESAT-6 family proteins and for screening ESAT-6 and CFP-10 mutants.  相似文献   

18.
Ostreolysin is a 16-kDa cytolytic protein specifically expressed in primordia and fruiting bodies of the edible mushroom Pleurotus ostreatus. To understand its interaction with lipid membranes, we compared its effects on mammalian cells, on vesicles prepared with either pure lipids or total lipid extracts, and on dispersions of lysophospholipids or fatty acids. At nanomolar concentrations, the protein lysed human, bovine and sheep erythrocytes by a colloid-osmotic mechanism, compatible with the formation of pores of 4 nm diameter, and was cytotoxic to mammalian tumor cells. A search for lipid inhibitors of hemolysis revealed a strong effect of lysophospholipids and fatty acids, occurring below their critical micellar concentration. This effect was distinct from the capacity of ostreolysin to bind to and permeabilize lipid membranes. In fact, permeabilization of vesicles occurred only when they were prepared with lipids extracted from erythrocytes, and not with lipids extracted from P. ostreatus or pure lipid mixtures, even if lysophospholipids or fatty acids were included. Interaction with lipid vesicles, and their permeabilization, correlated with an increase in the intrinsic fluorescence and alpha-helical content of the protein, and with aggregation, which were not detected with lysophospholipids. It appears that either an unknown lipid acceptor or a specific lipid complex is required for binding, aggregation and pore formation. The inhibitory effect of lysophospholipids may reflect a regulatory role for these components on the physiological action of ostreolysin and related proteins during fruiting.  相似文献   

19.
The equilibrium binding of 14C-labeled ADP to intact washed human blood platelets and to platelet membranes was investigated. With both intact platelets and platelet membranes a similar concentration dependence curve was found. It consisted of a curvilinear part below 20 microM and a rectilinear part above this concentration. At high ADP concentrations, the rectilinear part appeared to be saturable. Because of this, two classes of saturable ADP binding sites were proposed. ADP was partly converted to ATP and AMP with intact platelets while this conversion was virtually absent in isolated platelet membranes. ADP was bound to platelet membranes with the same type of curves found for intact platelets. The ADP binding to the high affinity system, which was stimulated by calcium ions, was nearly independent of temperature and had a pH optimum at 7.8. A number of agents were investigated for inhibiting properties. Of the sulfhydryl reagents only p-chloromercuribenzene sulfonate inhibited both high and low affinity binding systems while iodoacetamide and N-ethylmaleimide were without effect. Compounds acting via cyclic AMP on platelet aggregation, such as adenosine and cyclic AMP itself, had no influence on binding. Some nucleosidediphosphates and nucleotide analogs at a concentration of 100 microM had no, or only a slight, effect on high affinity ADP binding. For some other nucleotides inhibitor constants were determined for both platelet ADP aggregation and ADP binding. The inhibitor constants of ATP, adenyl-5'-yl-(beta,gamma-methylene)diphosphate, IDP, adenosine-5'(2-O-thio)diphosphate, for aggregation and high affinity binding were in good correlation with each other. Exceptions formed fluorosulfonylbenzoyl adenosine and AMP. The ATP formation found with intact platelets could be attributed to a nucleosidediphosphate kinase. It was investigated in some detail. The enzyme was magnesium dependent, had a Q10 value of 1.41, a pH optimum at 8.0, was competitively inhibited by AMP and reacted via a ping pong mechanism. All findings described in this paper indicate that platelets as well as platelet membranes bind ADP with the same characteristics and they suggest that the high affinity binding of ADP is involved in platelet aggregation induced by ADP. The results on nucleosidediphosphate kinase did not permit a firm conclusion about the role of the enzyme in induction of platelet aggregation by ADP.  相似文献   

20.
Peripherin-2, the product of the rds gene, is a tetraspanin protein. In this study, we show that peripherin-2 forms a complex with melanoregulin (MREG), the product of the Mreg locus. Genetic studies suggest that MREG is involved in organelle biogenesis. In this study, we explore the role of this protein in processes associated with the formation of disk membranes, specialized organelles of photoreceptor rod cells. MREG antibodies were generated and found to be immunoreactive with a 28 kDa protein in retinal extracts, bovine OS, ARPE-19 cells, and rat RPE. MREG colocalized with peripherin-2 in WT (CB6F1/J) and in rds+/- retinas. Western blots of serial tangential sections confirmed the close association of these two proteins within the IS and basal outer segment of rods. Immunoprecipitation (IP) of OS extracts showed formation of a complex between MREG and peripherin-2-ROM-1 hetero-oligomers. This interaction was confirmed with pulldown analyses in which the GST-PerCter protein selectively pulled down His-MREG and His-MREG selectively pulled down PerCter. Biacore analysis using peptide inhibitors and per-2 truncation mutant studies allowed us to map the MREG binding site on per-2 to the last five residues of the C-terminus (Gln341-Gly346), and kinetic data predicted a KD of 80 nM for PerCter-MREG binding. Finally, the effect of MREG on photoreceptor specific membrane fusion was assayed using a disk-plasma membrane cell free assay. Preincubation of target membranes with MREG resulted in a dose-dependent inhibition of fusion with an IC50 in the submicromolar range. Collectively, these results suggest that this newly identified protein regulates peripherin-2 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号