首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we report data suggesting the presence of a non-CB1, non-CB2 cannabinoid site in the cerebellum of CB1-/- mice. We have carried out [(35)S]GTPgammaS binding experiments in striata, hippocampi, and cerebella of CB1-/- and CB1(+/+) mice with Delta(9)-THC, WIN55,212-2, HU-210, SR141716A, and SR144528. In CB1-/- mice Delta(9)-THC and HU-210 did not stimulate [(35)S]GTPgammaS binding. However, WIN55,212-2 was able to stimulate [(35)S]GTPgammaS binding in cerebella of CB1-/- mice. The maximal effect of this stimulation was 31% that of wild type animals. This effect was reversible neither by CB1 nor CB2 receptor antagonists. Similar results were obtained with the endogenous cannabinoid, anandamide. However, adenylyl cyclase was not inhibited by WIN55,212-2 or anandamide in the CB1(minus sign/minus sign) animals. In striata and hippocampi of CB1-/- mice no [(35)S]GTPgammaS stimulation curve could be obtained with WIN55,212. Our findings suggest that there is a non-CB1 non-CB2 receptor present in the cerebellum of CB1-/- mice.  相似文献   

2.
Abstract: Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 {[1α,2β( R )5α]-(−)-5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol}, and the specific antagonist SR 141716 [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H]dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 µ M ) and anandamide (10 µ M ) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 µ M ). CP 55940 (1 µ M ) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelled striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献   

3.
Abstract: This study was undertaken to characterize further the central cannabinoid receptors in rat primary neuronal cell cultures from selected brain structures. By using [3H]SR 141716A, the specific CB1 receptor antagonist, we demonstrate in cortical neurons the presence of a high density of specific binding sites ( B max = 139 ± 9 fmol/mg of protein) displaying a high affinity ( K D = 0.76 ± 0.09 n M ). The two cannabinoid receptor agonists, CP 55940 and WIN 55212-2, inhibited in a concentration-dependent manner cyclic AMP production induced by either 1 µ M forskolin or isoproterenol with EC50 values in the nanomolar range (4.6 and 65 n M with forskolin and 1.0 and 5.1 n M with isoproterenol for CP 55940 and WIN 55212-2, respectively). Moreover, in striatal neurons and cerebellar granule cells, CP 55940 was also able to reduce the cyclic AMP accumulation induced by 1 µ M forskolin with a potency similar to that observed in cortical neurons (EC50 values of 3.5 and 1.9 n M in striatum and cerebellum, respectively). SR 141716A antagonized the CP 55940- and WIN 55212-2-induced inhibition of cyclic AMP accumulation, suggesting CB1 receptor-specific mediation of these effects on all primary cultures tested. Furthermore, CP 55940 was unable to induce mitogen-activated protein kinase activation in either cortical or striatal neurons. In conclusion, our results show nanomolar efficiencies for CP 55940 and WIN 55212-2 on adenylyl cyclase activity and no effect on any other signal transduction pathway investigated in primary neuronal cultures.  相似文献   

4.
Some 8-alkynyladenosines were synthesized and evaluated for their adenosine receptor activity, utilizing radioligand binding studies (A(1), A(2A), A(3)) or adenylyl cyclase activity assays (A(2B)). Furthermore, the maximal induction of guanosine 5'-(gamma-thio)triphosphate ([35S]GTPgammaS) binding to G proteins and the inhibition of NECA-stimulated binding, in membranes of CHO cells which express the human A(3) receptor, were used to determine the intrinsic activity of these nucleosides at the A(3) adenosine receptor. The results showed that these new adenosine derivatives are very selective ligands for the A(3) receptor subtype and behave as adenosine antagonists, since they do not stimulate basal [35S]GTPgammaS binding, but inhibit NECA-stimulated binding. This is the first report that adenosine derivatives, with unmodified ribose moiety, are adenosine receptor antagonists.  相似文献   

5.
The cannabinoid receptor 1 (CB1), a member of the class A G protein-coupled receptor family, is expressed in brain tissue where agonist stimulation primarily activates the pertussis toxin-sensitive inhibitory G protein (G(i)). Ligands such as CP55940 ((1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3- hydroxypropyl)cyclohexan-1-ol) and Δ(9)-tetrahydrocannabinol are orthosteric agonists for the receptor, bind the conventional binding pocket, and trigger G(i)-mediated effects including inhibition of adenylate cyclase. ORG27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)ethyl]amide) has been identified as an allosteric modulator that displays positive cooperativity for CP55940 binding to CB1 yet acts as an antagonist of G protein coupling. To examine this apparent conundrum, we used the wild-type CB1 and two mutants, T210A and T210I (D'Antona, A. M., Ahn, K. H., and Kendall, D. A. (2006) Biochemistry 45, 5606-5617), which collectively cover a spectrum of receptor states from inactive to partially active to more fully constitutively active. Using these receptors, we demonstrated that ORG27569 induces a CB1 receptor state that is characterized by enhanced agonist affinity and decreased inverse agonist affinity consistent with an active conformation. Also consistent with this conformation, the impact of ORG27569 binding was most dramatic on the inactive T210A receptor and less pronounced on the already active T210I receptor. Although ORG27569 antagonized CP55940-induced guanosine 5'-3-O-(thio)triphosphate binding, which is indicative of G protein coupling inhibition in a concentration-dependent manner, the ORG27569-induced conformational change of the CB1 receptor led to cellular internalization and downstream activation of ERK signaling, providing the first case of allosteric ligand-biased signaling via CB1. ORG27569-induced ERK phosphorylation persisted even after pertussis toxin treatment to abrogate G(i) and occurs in HEK293 and neuronal cells.  相似文献   

6.
《Life sciences》1996,59(8):659-668
Cannabinoid receptors belong to the class of G-protein-coupled receptors which inhibit adenylyl cyclase. Coupling of receptors to G-proteins can be assessed by the ability of agonists to stimulate guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding in the presence of excess GDP. The present study examined the effect of cannabinoid agonists on [35S]GTPγS binding in rat brain membranes. Assays were conducted with 0.05 nM [35S]GTPγS, incubated with rat cerebellar membranes, 1–30 μM GDP and the cannabinoid agonist WIN 55212-2. Results showed that the ability of WIN 55212-2 to stimulate [35S]GTPγS binding increased with increasing concentrations of GDP, with 10–30 μM GDP providing approximately 150–200% stimulation by the cannabinoid agonist. The pharmacology of cannabinoid agonist stimulation of [35S]GTPγS binding paralleled that of previously reported receptor binding and adenylyl cyclase assays, and agonist stimulation of [35S]GTPγS binding was blocked by the cannabinoid antagonist SR141716A. Brain regional studies revealed widespread stimulation of [35S]GTPγS binding by WIN 55212-2 in a number of brain areas, consistent with in vitro [35S]GTPγS autoradiography. These results demonstrate that [35S]GTPγS binding in the presence of excess GDP is an effective measure of cannabinoid receptor coupling to G-proteins in brain membranes.  相似文献   

7.
The human mu opioid receptor was expressed stably in Flp-In T-REx HEK293 cells. Occupancy by the agonist DAMGO (Tyr-d-Ala-Gly-N-methyl-Phe-Gly-ol) resulted in phosphorylation of the ERK1/2 MAP kinases, which was blocked by the opioid antagonist naloxone but not the cannabinoid CB1 receptor inverse agonist SR141716A. Expression of the human cannabinoid CB1 receptor in these cells from the inducible Flp-In T-REx locus did not alter expression levels of the mu opioid receptor. This allowed the cannabinoid CB1 agonist WIN55212-2 to stimulate ERK1/2 phosphorylation but resulted in a large reduction in the capacity of DAMGO to activate these kinases. Although lacking affinity for the mu opioid receptor, co-addition of SR141716A caused recovery of the effectiveness of DAMGO. In contrast co-addition of the CB1 receptor neutral antagonist O-2050 did not. Induction of the CB1 receptor also resulted in an increase of basal [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding and thereby a greatly reduced capacity of DAMGO to further stimulate [(35)S]GTPgammaS binding. CB1 inverse agonists attenuated basal [(35)S]GTPgammaS binding and restored the capacity of DAMGO to stimulate. Flp-In T-REx HEK293 cells were generated, which express the human mu opioid receptor constitutively and harbor a modified D163N cannabinoid CB1 receptor that lacks constitutive activity. Induction of expression of the modified cannabinoid CB1 receptor did not limit DAMGO-mediated ERK1/2 MAP kinase phosphorylation and did not allow SR141716A to enhance the function of DAMGO. These data indicate that it is the constitutive activity inherent in the cannabinoid CB1 receptor that reduces the capacity of co-expressed mu opioid receptor to function.  相似文献   

8.
Chronic treatment of rats with delta9-tetrahydrocannabinol (delta9-THC) results in tolerance to its acute behavioral effects. In a previous study, 21-day delta9-THC treatment in rats decreased cannabinoid activation of G proteins in brain, as measured by in vitro autoradiography of guanosine-5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding. The present study investigated the time course of changes in cannabinoid-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding in both brain sections and membranes, following daily delta9-THC treatments for 3, 7, 14, and 21 days. Autoradiographic results showed time-dependent decreases in WIN 55212-2-stimulated [35S]GTPgammaS and [3H]WIN 55212-2 binding in cerebellum, hippocampus, caudate-putamen, and globus pallidus, with regional differences in the rate and magnitude of down-regulation and desensitization. Membrane binding assays in these regions showed qualitatively similar decreases in WIN 55212-2-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding (using [3H]SR141716A), and demonstrated that decreases in ligand binding were due to decreases in maximal binding values, and not ligand affinities. These results demonstrated that chronic exposure to delta9-THC produced time-dependent and region-specific down-regulation and desensitization of brain cannabinoid receptors, which may represent underlying biochemical mechanisms of tolerance to cannabinoids.  相似文献   

9.
Heterozygous CB1 receptor knockout mice were used to examine the effect of reduced CB1 receptor density on G-protein activation in membranes prepared from four brain regions: cerebellum, hippocampus, striatum/globus pallidus (striatum/GP) and cingulate cortex. Results showed that CB1 receptor levels were approximately 50% lower in heterozygous mice in all regions examined. However, maximal stimulation of [(35)S]guanosine-5'-(gamma-O-thio) triphosphate ([(35)S]GTPgammaS) binding by the high efficacy agonist WIN 55,212-2 was reduced by only 20-25% in most brain regions, with the exception of striatum/GP where the decrease in stimulation was as predicted (approximately 50%). Furthermore, although the efficacies of the cannabinoid partial agonists, methanandamide and (9)-tetrahydrocannabinol, were similarly lower in heterozygous mice, their relative efficacies compared with WIN 55,212-2 were generally unchanged. Saturation analysis of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding showed that decreased stimulation by WIN 55,212-2 in striatum/GP of heterozygous mice was caused by a decrease in the apparent affinity of net-stimulated [(35)S]GTPgammaS binding. The apparent maximal number of binding sites (B(max)) values of net WIN 55,212-2-stimulated [(35)S]GTPgammaS binding were unchanged in cerebellum and striatum/GP of heterozygous mice, but decreased in cingulate cortex, with a similar trend in hippocampus. Moreover, in every region except cingulate cortex, the maximal number of net-stimulated [(35)S]GTPgammaS binding sites per receptor was significantly increased in heterozygous mice. These results indicate region-dependent increases in the apparent efficiency of CB1 receptor-mediated G-protein activation in heterozygous CB1 knockout mice.  相似文献   

10.
Novel 3,8- and 8,9-disubstituted N(6)-cyclopentyladenine derivatives were synthesised in moderate overall yield from 6-chloropurine. The derivatives were made in an attempt to find a new neutral antagonist with high affinity for adenosine A(1) receptors. N(6)-Cyclopentyl-9-methyladenine (N-0840) was used as a lead compound. Binding affinities of the new analogues were determined for human adenosine A(1) and A(3) receptors. Their intrinsic activity was assessed in [35S]GTPgammaS binding experiments. Elongation of the 9-methyl of N-0840 to a 9-propyl substituent was very well tolerated. A 9-benzyl group, on the other hand, caused a decrease in adenosine A(1) receptor affinity. Next, the 8-position was examined in detail, and affinity was increased with appropriate substitution. Most derivatives were A(1)-selective and 20 of the new compounds (6-9, 15-21, 23-26, 28, 31, 33, 35, and 36) had higher adenosine A(1) receptor affinity than the reference substance, N-0840. Compound 31 (N(6)-cyclopentyl-8-(N-methylisopropylamino)-9-methyladenine, LUF 5608) had the highest adenosine A(1) receptor affinity, 7.7 nM. In the [35S]GTPgammaS binding experiments, derivatives 5, 14, 22, 23, 25, 26, 33 and 34 did not significantly change basal [35S]GTPgammaS binding, thus behaving as neutral antagonists. Moreover, four of these compounds (23, 25, 26, and 33) displayed a 4- to 10-fold increased adenosine A(1) receptor affinity (75-206 nM) compared to N-0840 (852 nM). In summary, we synthesised a range of N-0840 analogues with higher affinity for adenosine A(1) receptors. In addition, four new derivatives, LUF 5666 (23), LUF 5668 (25), LUF 5669 (26) and LUF 5674 (33), behaved as neutral antagonists when tested in [35S]GTPgammaS binding studies. Thus, these compounds have improved characteristics as neutral adenosine A(1) receptor antagonists.  相似文献   

11.
Retroanandamide (2f) and its 10 analogues (1a-e, 2a-e) were synthesized and evaluated for the cannabinoid receptor activation by a [35S]GTPgammaS binding assay using rat cerebellar membranes, and Chinese hamster ovary cell membranes expressing human CB2 receptors. The primary goal of the study was to develop cannabinoid receptor agonists having improved enzymatic stability compared to endogenous N-arachidonoyl ethanolamide (AEA). Furthermore, by reversing the amide bond of AEA, the formation of arachidonic acid would be prevented. Finally, an effect of the carbonyl carbon position on the cannabinoid receptor activity was explored by synthesizing retroanandamide analogues having different chain lengths (1a-e, C19; 2a-f, C20). All the synthesized compounds, except 2c, behaved as partial agonists for the both cannabinoid receptors. In rat brain homogenate, the reversed amides possessed significantly higher stability against FAAH induced degradation than AEA. Therefore, the reversed amide analogues of AEA may serve as enzymatically stable structural basis for the drug design based on the endogenous cannabinoids.  相似文献   

12.
The hypothesis of these studies is that ligand efficacy at the neuronal CB1 receptor is dependent on the ratio of ligand affinities for the active and inactive states of the receptor. Agonist efficacy was determined in rat cerebellar membranes using agonist-induced guanosine 5'-O-(3-[35S]thiotriphosphate) binding; efficacy was variable among the CB1 agonists examined. Ligand affinities for the active and inactive state of the CB1 receptor were determined by competition with [3H]CP55940 and [3H]SR141716A in the presence of 5'-guanylylimidodiphosphate, respectively. All of the agonists investigated had a higher affinity for the active state than the inactive state. The fraction of CB1 receptors in the active state at a maximally effective concentration was calculated for each agonist and was found to correlate significantly with agonist efficacy. These studies demonstrate that the CB1 receptor of the cerebellum can assume an active conformation in the absence of agonist and that the variability in efficacy among CB1 receptor agonists can be explained by the relative affinities of these ligands for the CB1 receptor in the active and inactive states.  相似文献   

13.
Alpha-methylated analogues of the endogenous cannabinoid, 2-arachidonoyl glycerol (2-AG), were synthesized aiming to the improved enzymatic stability of 2-AG. In addition, the CB1 activity properties of fluoro derivatives of 2-AG were studied. The CB1 receptor activity was determined by the [35S]GTPgammaS binding assay, and the enzymatic stability of alpha-methylated analogues was determined in rat cerebellar membranes. The results indicate that even if the alpha-methylated 2-AG derivatives are slightly weaker CB1 receptor agonists than 2-AG, they are clearly more stable than 2-AG. In addition, the results showed that the replacement of the hydroxyl group(s) of 2-AG by fluorine does not improve the CB1 activity of 2-AG.  相似文献   

14.
An extended series of alkyl carboxamide analogs of N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl- 1H-pyrazole-3-carboxamide (SR141716; 5) was synthesized. Each compound was tested for its ability to displace the prototypical cannabinoid ligands ([3H]CP-55,940, [3H]2; [3H]SR141716, [3H]5; and [3H]WIN55212-2, [3H]3), and selected compounds were further characterized by determining their ability to affect guanosine 5'-triphosphate (GTP)-gamma-[35S] binding and their effects in the mouse vas deferens assay. This systematic evaluation has resulted in the discovery of novel compounds with unique binding properties at the central cannabinoid receptor (CB1) and distinctive pharmacological activities in CB1 receptor tissue preparations. Specifically, compounds with nanomolar affinity which are able to fully displace [3H]5 and [3H]2, but unable to displace [3H]3 at similar concentrations, have been synthesized. This selectivity in ligand displacement is unprecedented, in that previously, compounds in every structural class of cannabinoid ligands had always been shown to displace each of these radioligands in a competitive fashion. Furthermore, the selectivity of these compounds appears to impart unique pharmacological properties when tested in a mouse vas deferens assay for CB1 receptor antagonism.  相似文献   

15.
Cannabinoid receptors are found in moderate density throughout the cerebral cortex. The anterior cingulate cortex (ACC) is of particular interest due its high level of cannabinoid receptors and role in behaviors known to be modulated by cannabinoids. These studies were conducted to determine the cellular localization of cannabinoid receptors and to compare the level of cannabinoid receptor binding with receptor-mediated G-protein activity in the rat ACC. Either ibotenic acid or undercut lesions were made in ACC, and brains were processed for [3H]WIN 55,212-2 and WIN 55,212-2-stimulated [35S]GTPgammaS autoradiography. Both cannabinoid receptors and receptor-activated G-proteins were highest in laminae I and VI of ACC in control tissue. Although similar levels of receptor binding were found in these laminae, significantly higher levels of receptor-activated G-proteins were found in lamina VI. Ibotenic acid lesions that destroyed ACC neurons decreased [3H]WIN 55,212-2 binding by 60-70% and eliminated WIN 55,212-2-stimulated [35S]GTPgammaS binding. In contrast, deafferentation of the ACC with undercut lesions had no significant effect on cannabinoid receptor binding or G-protein activation. These results indicate that cannabinoid receptors in laminae I and VI of the ACC are located on somatodendritic elements or axons intrinsic to the ACC. In addition, differences in the relative levels of cannabinoid binding sites and activated G-proteins between cortical laminae indicate that the efficiency of cannabinoid receptors for G-protein activation may vary within a specific brain region.  相似文献   

16.
Blockade of the cannabinoid type 1 (CB(1)) receptor could suppress methamphetamine self-administration; however, the cellular mechanism remains unclear. In this study, we intended to investigate the significance of brain CB(1) receptors on the development of behavioral sensitization to methamphetamine. Male Sprague-Dawley rats treated with chronic methamphetamine (4 mg/kg, i.p.) for either 7 or 14 days developed behavioral sensitization to methamphetamine (1 mg/kg) at withdrawal day 7. A progressive decrease in numbers of CB(1) receptor (both Bmax and mRNA) but increase in binding affinity (Kd) was noticed during withdrawal days 3 to 7. Microinjection of CB(1) antagonist [5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide] into the nucleus accumbens (NAc) at withdrawal day 7, significantly suppressed the behavioral sensitization to methamphetamine. In NAc brain slices preparation, acute incubation with CB(1) agonist (1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP 55940) dose-dependently enhanced cAMP accumulation in sensitized rats; no change was noticed in control groups. Consequently, treatment of CP 55940 induced a dose-dependent (10 nmol/L-10 micromol/L) phosphorylation on down-stream dopamine and cAMP-regulated phosphoprotein of Mr 32 000 (DARPP-32)/Thr34 in sensitized rats, while only 10 micromol/L CP 55940 was able to enhance the phosphoDARPP-32/T34 in control groups. Alternatively, both basal activity of calcineurin (PP-2B) and CP 55940-induced changes in the amount of PP-2B in the NAc were both decreased in sensitized rats, but not in controls. Overall, we demonstrated that brain CB(1) receptor and its down-stream cAMP/DARPP-32/T34/PP-2B signaling are profoundly altered in methamphetamine-sensitized animals.  相似文献   

17.
Chronic exposure to CP55,940 produced a significant down-regulation of cannabinoid receptors in the striatum, cortex, hippocampus, and cerebellum of rat brain. At 24 h after SR141716-precipitated withdrawal, we observed a tendency to return to basal levels in the striatum and cortex, whereas the specific binding remained lower in the hippocampus and cerebellum. When we surveyed cannabinoid receptor-activated G proteins, in chronic CP55,940-treated rats the guanosine 5'-O:-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding assay revealed a decrease of activated G proteins in the striatum, cortex, and hippocampus, whereas no significant changes were seen in the cerebellum. At 24 h after the SR141716-precipitated withdrawal, [(35)S]GTPgammaS binding increased compared with that of rats chronically exposed to CP55,940, attaining the control level except for cerebellum, where we observed a trend to overcome the control amounts. Concerning the cyclic AMP (cAMP) cascade, which represents the major intracellular signaling pathway activated by cannabinoid receptors, in the cerebral areas from rats chronically exposed to CP55,940 we found alteration in neither cAMP levels nor protein kinase A activity. In the brain regions taken from CP55, 940-withdrawn rats, we only observed a significant up-regulation in the cerebellum. Our findings suggest that receptor desensitization and down-regulation are strictly involved in the development of cannabinoid tolerance, whereas alterations in the cAMP cascade in the cerebellum could be relevant in the mediation of the motor component of cannabinoid abstinence.  相似文献   

18.
Mizoguchi H  Narita M  Nagase H  Tseng LF 《Life sciences》2000,67(22):2733-2743
The activation of mu-, delta- and kappa1-opioid receptors by their respective agonists increases the binding of the non-hydrolyzable GTP analog guanosine-5'-(gamma-thio)-triphosphate (GTPgammaS) to G proteins. Beta-endorphin is an endogenous opioid peptide which binds nonselectively to mu-, delta- and putative epsilon-opioid receptors. The present experiment was designed to determine which opioid receptors are involved in the stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the mouse pons/medulla. The mouse pons/medulla membranes were incubated in an assay buffer containing 50 pM [35S]GTPgammaS, 30 microM GDP and various concentrations of beta-endorphin. Beta-endorphin (0.1 nM-10 microM) increased [35S]GTPgammaS binding in a concentration-dependent manner, and 10 microM beta-endorphin produced a maximal stimulation of approximately 260% over baseline. This stimulation of [35S]GTPgammaS binding by beta-endorphin was partially attenuated by the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA), but not by the delta-opioid receptor antagonist naltrindole (NTI) or the kappa1-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Beta-endorphin stimulated [35S]GTPgammaS binding by about 80% in the presence of 10 microM beta-FNA, 30 nM NTI and 100 nM nor-BNI. The same concentrations of these antagonists completely blocked the stimulation of [35S]GTPgammaS binding induced by 10 microM [D-Ala2,NHPhe4,Gly-ol]enkephalin, [D-Pen(2,5)]enkephalin and U50,488H, respectively. Moreover, the residual stimulation of [35S]GTPgammaS binding induced by beta-endorphin in the presence of the three opioid receptor antagonists was significantly attenuated by 100 nM of the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27). These results indicate that the stimulation of [35S]GTPgammaS binding induced by beta-endorphin is mediated by the stimulation of both mu- and putative epsilon-opioid receptors in the mouse pons/medulla.  相似文献   

19.
Synthesis and pharmacological evaluation of a new series of cannabinoid receptor antagonists of indazole ether derivatives have been performed. Pharmacological evaluation includes radioligand binding assays with [3H]-CP55940 for CB1 and CB2 receptors and functional activity for cannabinoid receptors on isolated tissue. In addition, functional activity of the two synthetic cannabinoids antagonists 18 (PGN36) and 17 (PGN38) were carried out in the osteoblastic cell line MC3T3-E1 that is able to express CB2R upon osteogenic conditions. Both antagonists abolished the increase in collagen type I gene expression by the well-known inducer of bone activity, the HU308 agonist. The results of pharmacological tests have revealed that four of these derivatives behave as CB2R cannabinoid antagonists. In particular, the compounds 17 (PGN38) and 18 (PGN36) highlight as promising candidates as pharmacological tools.  相似文献   

20.
NIH3T3 fibroblast cells transfected with the full-length coding regions of the mt1 and MT2 human melatonin receptors stably expressed the receptor, coupled to a pertussis-toxin-sensitive G protein and exhibiting high affinity for melatonin. Both mt1 and MT2 melatonin receptors mediated the incorporation of [35S]GTPgammaS into isolated membranes via receptor-catalyzed exchange of [35S]GTPgammaS for GDP. The relative intrinsic activity and potency of the compounds were subsequently studied by using [35S]GTPgammaS incorporation. The order of potency was equal to the order of apparent affinity. Melatonin and full agonists increased [35S]GTPgammaS binding. Luzindole did not increase basal [35S]GTPgammaS binding but competitively inhibited melatonin-stimulated [35S]GTPgammaS binding, thus exhibiting antagonist action. Two other mt1 antagonists, 4P-PDOT and N-[(2-phenyl-1H-indol-3-yl)ethyl]cyclobutanecarboxamide, behaved as partial agonists at the MT2 subtype, with relative intrinsic activities of 0.37 and 0.39, respectively. For the first time, these findings show important differences in analogue intrinsic activity between the human mt1 and MT2 melatonin receptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号