首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Francisella tularensis is a pathogen optimally adapted to efficiently invade its respective host cell and to proliferate intracellularly. We investigated the role of host cell membrane microdomains in the entry of F. tularensis subspecies holarctica vaccine strain (F. tularensis live vaccine strain) into murine macrophages. F. tularensis live vaccine strain recruits cholesterol-rich lipid domains ("lipid rafts") with caveolin-1 for successful entry into macrophages. Interference with lipid rafts through the depletion of plasma membrane cholesterol, through induction of raft internalization with choleratoxin, or through removal of raft-associated GPI-anchored proteins by treatment with phosphatidylinositol phospholipase C significantly inhibited entry of Francisella and its intracellular proliferation. Lipid raft-associated components such as cholesterol and caveolin-1 were incorporated into Francisella-containing vesicles during entry and the initial phase of intracellular trafficking inside the host cell. These findings demonstrate that Francisella requires cholesterol-rich membrane domains for entry into and proliferation inside macrophages.  相似文献   

2.
Previous data has shown that adenylyl cyclase type 6 (AC6) is expressed principally in lipid rafts or caveolae of cardiac myocytes and other cell types while certain other isoforms of AC are excluded from these microdomains. The mechanism by which AC6 is localized to lipid rafts or caveolae is unknown. In this study, we show AC6 is localized in lipid rafts of COS-7 cells (expressing caveolin-1) and in HEK-293 cells or cardiac fibroblasts isolated from caveolin-1 knock-out mice (both of which lack prototypical caveolins). To determine the region of AC6 that confers raft localization, we independently expressed each of the major intracellular domains, the N-terminus, C1 and C2 domains, and examined their localization with various approaches. The N-terminus did not associate with lipid rafts or caveolae of either COS-7 or HEK-293 cells nor did it immunoprecipitate with caveolin-1 when expressed in COS-7 cells. By contrast, the C1 and C2 domains each associated with lipid rafts to varying degrees and were present in caveolin-1 immunoprecipitates. There were no differences in the pattern of localization of either the C1 or C2 domains between COS-7 and HEK-293 cells. Further dissection of the C1 domain into four individual proteins indicated that the N-terminal half of this domain is responsible for its raft localization. To probe for a role of a putative palmitoylation motif in the C-terminal portion of the C2 domain, we expressed various truncated forms of AC6 lacking most or all of the C-terminal 41 amino acids. These truncated AC6 proteins were not altered in terms of their localization in lipid rafts or their catalytic activity, implying that this C-terminal region is not required for lipid raft targeting of AC6. We conclude that while the C1 domain may be most important, both the C1 and C2 domains of AC6 play a role in targeting AC6 to lipid rafts.  相似文献   

3.
The mechanism by which the intracellular bacterial pathogen Chlamydia trachomatis enters eukaryotic cells is poorly understood. There are conflicting reports of entry occurring by clathrin-dependent and clathrin-independent processes. We report here that C. trachomatis serovar K enters HEp-2 and HeLa 229 epithelial cells and J-774A.1 mouse macrophage/monocyte cells via caveolin-containing sphingolipid and cholesterol-enriched raft microdomains in the host cell plasma membranes. First, filipin and nystatin, drugs that specifically disrupt raft function by cholesterol chelation, each impaired entry of C. trachomatis serovar K. In control experiments, filipin did not impair entry of the same organism by an antibody-mediated opsonic process, nor did it impair entry of BSA-coated microspheres. Second, the chlamydia-containing endocytic vesicles specifically reacted with antisera against the caveolae marker protein caveolin. These vesicles are known to become the inclusions in which parasite replication occurs. They avoid fusion with lysosomes and instead traffic to the Golgi region, where they intercept Golgi-derived vesicles that recycle sphingolipids and cholesterol to the plasma membrane. We also report that late-stage C. trachomatis inclusions continue to display high levels of caveolin, which they likely acquire from the exocytic Golgi vesicles. We suggest that the atypical raft-mediated entry process may have important consequences for the host-pathogen interaction well after entry has occurred. These consequences include enabling the chlamydial vesicle to avoid acidification and fusion with lysosomes, to traffic to the Golgi region, and to intercept sphingolipid-containing vesicles from the Golgi.  相似文献   

4.
Lipid rafts are cholesterol-sphingolipid-rich microdomains that function as platforms for membrane trafficking and signal transduction. Caveolae are specialized lipid raft domains that contain the structural proteins known as the caveolins. Connexins are a family of transmembrane proteins that self-associate to form cell-cell connections known as gap junctions and that are linked to cytosolic proteins, forming a protein complex or Nexus. To determine the extent to which these intracellular compartments intersect, we have systematically evaluated whether connexins are associated with lipid rafts and caveolin-1. We show that connexin 43 (Cx43) colocalizes, cofractionates, and coimmunoprecipitates with caveolin-1. A mutational analysis of Cx43 reveals that the hypothesized PDZ- and presumptive SH2/SH3-binding domains within the Cx43 carboxyl terminus are not required for this targeting event or for its stable interaction with caveolin-1. Furthermore, Cx43 appears to interact with two distinct caveolin-1 domains, i.e., the caveolin-scaffolding domain (residues 82-101) and the C-terminal domain (135-178). We also show that other connexins (Cx32, Cx36, and Cx46) are targeted to lipid rafts, while Cx26 and Cx50 are specifically excluded from these membrane microdomains. Interestingly, recombinant coexpression of Cx26 with caveolin-1 recruits Cx26 to lipid rafts, where it colocalizes with caveolin-1. This trafficking event appears to be unique to Cx26, since the other connexins investigated in this study do not require caveolin-1 for targeting to lipid rafts. Our results provide the first evidence that connexins interact with caveolins and partition into lipid raft domains and indicate that these interactions are connexin specific.  相似文献   

5.
Diversity of Chlamydia trachomatis major outer membrane protein genes.   总被引:66,自引:3,他引:63       下载免费PDF全文
Genomic DNA libraries were constructed for Chlamydia trachomatis serovars B and C by using BamHI fragments, and recombinants that contained the major outer membrane protein (omp1) gene for each serovar were identified and sequenced. Comparisons between these gene sequences and the gene from serovar L2 demonstrated fewer base pair differences between serovars L2 and B than between L2 and C; this finding is consistent with the serologic and antigenic relationships among these serovars. The translated amino acid sequence for the major outer membrane proteins (MOMPs) contained the same number of amino acids for serovars L2 and B, whereas the serovar C MOMP contained three additional amino acids. The antigenic diversity of the chlamydial MOMP was reflected in four sequence-variable domains, and two of these domains were candidates for the putative type-specific antigenic determinant. The molecular basis of omp1 gene diversity among C. trachomatis serovars was observed to be clustered nucleotide substitutions for closely related serovars and insertions or deletions for distantly related serovars.  相似文献   

6.
Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.  相似文献   

7.
Lipid rafts are cholesterol-enriched microdomains involved in cellular trafficking and implicated as portals for certain pathogens. We sought to determine whether the oral pathogen Porphyromonas gingivalis enters macrophages via lipid rafts, and if so, to examine the impact of raft entry on its intracellular fate. Using J774A.1 mouse macrophages, we found that P. gingivalis colocalizes with lipid rafts in a cholesterol-dependent way. Depletion of cellular cholesterol using methyl-beta-cyclodextrin resulted in about 50% inhibition of P. gingivalis uptake, although this effect was reversed by cholesterol reconstitution. The intracellular survival of P. gingivalis was dramatically inhibited in cholesterol-depleted cells relative to untreated or cholesterol-reconstituted cells, even when infections were adjusted to allow equilibration of the initial intracellular bacterial load. P. gingivalis thus appeared to exploit raft-mediated uptake for promoting its survival. Consistent with this, lipid raft disruption enhanced the colocalization of internalized P. gingivalis with lysosomes. In contrast, raft disruption did not affect the expression of host receptors interacting with P. gingivalis, although it significantly inhibited signal transduction. In summary, P. gingivalis uses macrophage lipid rafts as signalling and entry platforms, which determine its intracellular fate to the pathogen's own advantage.  相似文献   

8.
Obligatory intracellular, human ehrlichiosis agents Ehrlichia chaffeensis and Anaplasma phagocytophilum create unique replicative compartments devoid of lysosomal markers in monocytes/macrophages and granulocytes respectively. The entry of these bacteria requires host phospholipase C (PLC)-gamma2 and protein tyrosine kinases, but their entry route is still unclear. Here, using specific inhibitors, double immunofluorescence labelling and the fractionation of lipid rafts, we demonstrate that bacterial entry and intracellular infection involve cholesterol-rich lipid rafts or caveolae and glycosylphosphatidylinositol (GPI)-anchored proteins. By fluorescence microscopy, caveolar marker protein caveolin-1 was co-localized with both early and replicative bacterial inclusions. Additionally, tyrosine-phosphorylated proteins and PLC-gamma2 were found in bacterial early inclusions. In contrast, clathrin was not found in any inclusions from either bacterium. An early endosomal marker, transferrin receptor, was not present in the early inclusions of E. chaffeensis, but was found in replicative inclusions of E. chaffeensis. Furthermore, several bacterial proteins from E. chaffeensis and A. phagocytophilum were co-fractionated with Triton X-100-insoluble raft fractions. The formation of bacteria-encapsulating caveolae, which assemble and retain signalling molecules essential for bacterial entry and interact with the recycling endosome pathway, may ensure the survival of these obligatory intracellular bacteria in primary host defensive cells.  相似文献   

9.
Chlamydia trachomatis is an obligate intracellular bacterium that causes a variety of diseases in humans. C. trachomatis has a complex developmental cycle that depends on host cells for replication, during which gene expression is tightly regulated. Here we identify two C. trachomatis proteases that possess deubiquitinating and deneddylating activities. We have designated these proteins ChlaDub1 and ChlaDub2. The genes encoding ChlaDub1 and ChlaDub2 are present in all Chlamydia species except for Chlamydia pneumoniae, and their catalytic domains bear similarity to the catalytic domains of other eukaryotic ubiquitin-like proteases (Ulp). The C. trachomatis DUBs react with activity-based probes and hydrolyse ubiquitinated and neddylated substrates. ChlaDub1 and ChlaDub2 represent the first known bacterial DUBs that possess both deubiquitinating and deneddylating activities.  相似文献   

10.
The life stages of Leishmania spp. include the infectious promastigote and the replicative intracellular amastigote. Each stage is phagocytosed by macrophages during the parasite life cycle. We previously showed that caveolae, a subset of cholesterol-rich membrane lipid rafts, facilitate uptake and intracellular survival of virulent promastigotes by macrophages, at least in part, by delaying parasitophorous vacuole (PV)-lysosome fusion. We hypothesized that amastigotes and promastigotes would differ in their route of macrophage entry and mechanism of PV maturation. Indeed, transient disruption of macrophage lipid rafts decreased the entry of promastigotes, but not amastigotes, into macrophages (P<0.001). Promastigote-containing PVs were positive for caveolin-1, and co-localized transiently with EEA-1 and Rab5 at 5 minutes. Amastigote-generated PVs lacked caveolin-1 but retained Rab5 and EEA-1 for at least 30 minutes or 2 hours, respectively. Coinciding with their conversion into amastigotes, the number of promastigote PVs positive for LAMP-1 increased from 20% at 1 hour, to 46% by 24 hours, (P<0.001, Chi square). In contrast, more than 80% of amastigote-initiated PVs were LAMP-1+ at both 1 and 24 hours. Furthermore, lipid raft disruption increased LAMP-1 recruitment to promastigote, but not to amastigote-containing compartments. Overall, our data showed that promastigotes enter macrophages through cholesterol-rich domains like caveolae to delay fusion with lysosomes. In contrast, amastigotes enter through a non-caveolae pathway, and their PVs rapidly fuse with late endosomes but prolong their association with early endosome markers. These results suggest a model in which promastigotes and amastigotes use different mechanisms to enter macrophages, modulate the kinetics of phagosome maturation, and facilitate their intracellular survival.  相似文献   

11.
The human pathogen Chlamydia trachomatis is an obligate intracellular bacterium, characterized by a developmental cycle that alternates between the infectious, extracellular elementary bodies and intracellular, metabolically active reticulate bodies. The cellular immune effector interferon gamma (IFN-gamma) inhibits chlamydial multiplication in human epithelial cells by induction of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase. IFN-gamma causes persistent C. trachomatis serovar A infections with atypical reticulate bodies that are unable to redifferentiate into elementary bodies and show diminished expression of important immunogens, but not of GroEL. However, the sensitivity to IFN-gamma varies among serovars of C. trachomatis. In our previous study significant IFN-gamma-specific, but tryptophan reversible, induction of proteins in C. trachomatis A and L2 with molecular masses of approximately 30 and 40 kDa was observed on 2D-gels. The 30-kDa protein from C. trachomatis L2 migrated with a significantly lower molecular weight in C. trachomatis A. In this paper we include C. trachomatis B, C and D in our investigations and identify the proteins as alpha- and beta-subunits of the chlamydial tryptophan synthase using matrix-assisted laser desorption/ionization mass spectrometry. DNA sequencing of the trpA genes from C. trachomatis A and C shows that the TrpA in these serovars is a 7.7-kDa truncated version of C. trachomatis D and L2 TrpA. The truncation probably impairs the TrpA activity, thus elucidating a possible molecular mechanism behind variations in the pathogenesis of C. trachomatis serovars.  相似文献   

12.
Pike LJ  Han X  Chung KN  Gross RW 《Biochemistry》2002,41(6):2075-2088
Lipid rafts are specialized cholesterol-enriched membrane domains that participate in cellular signaling processes. Caveolae are related domains that become invaginated due to the presence of the structural protein, caveolin-1. In this paper, we use electrospray ionization mass spectrometry (ESI/MS) to quantitatively compare the phospholipids present in plasma membranes and nondetergent lipid rafts from caveolin-1-expressing and nonexpressing cells. Lipid rafts are enriched in cholesterol and sphingomyelin as compared to the plasma membrane fraction. Expression of caveolin-1 increases the amount of cholesterol recovered in the lipid raft fraction but does not affect the relative proportions of the various phospholipid classes. Surprisingly, ESI/MS demonstrated that lipid rafts are enriched in plasmenylethanolamines, particularly those containing arachidonic acid. While the total content of anionic phospholipids was similar in plasma membranes and nondetergent lipid rafts, the latter were highly enriched in phosphatidylserine but relatively depleted in phosphatidylinositol. Detergent-resistant membranes made from the same cells showed a higher cholesterol content than nondetergent lipid rafts but were depleted in anionic phospholipids. In addition, these detergent-resistant membranes were not enriched in arachidonic acid-containing ethanolamine plasmalogens. These data provide insight into the structure of lipid rafts and identify potential new roles for these domains in signal transduction.  相似文献   

13.
To induce toxicity, cholera toxin (CT) must first bind ganglioside G(M1) at the plasma membrane, enter the cell by endocytosis, and then traffic retrograde into the endoplasmic reticulum. We recently proposed that G(M1) provides the sorting motif necessary for retrograde trafficking into the biosynthetic/secretory pathway of host cells, and that such trafficking depends on association with lipid rafts and lipid raft function. To test this idea, we examined whether CT action in human intestinal T84 cells depends on membrane cholesterol. Chelation of cholesterol with 2-hydroxypropyl beta-cyclodextrin or methyl beta-cyclodextrin reversibly inhibited CT-induced chloride secretion and prolonged the time required for CT to enter the cell and induce toxicity. These effects were specific to CT, as identical conditions did not alter the potency or toxicity of anthrax edema toxin that enters the cell by another mechanism. We found that endocytosis and trafficking of CT into the Golgi apparatus depended on membrane cholesterol. Cholesterol depletion also changed the density and specific protein content of CT-associated lipid raft fractions but did not entirely displace the CT-G(M1) complex from these lipid raft microdomains. Taken together these data imply that cholesterol may function to couple the CT-G(M1) complex with raft domains and with other membrane components of the lipid raft required for CT entry into the cell.  相似文献   

14.
Membrane lipid raft domains are thought to be sites of assembly for many enveloped viruses. The roles of both classical lipid rafts and lipid rafts associated with the membrane cytoskeleton in the assembly of Newcastle disease virus (NDV) were investigated. The lipid raft-associated proteins caveolin-1, flotillin-2, and actin were incorporated into virions, while the non-lipid raft-associated transferrin receptor was excluded. Kinetic analyses of the distribution of viral proteins in lipid rafts, as defined by detergent-resistant membranes (DRMs), in non-lipid raft membranes, and in virions showed an accumulation of HN, F, and NP viral proteins in lipid rafts early after synthesis. Subsequently, these proteins exited the DRMs and were recovered quantitatively in purified virions, while levels of these proteins in detergent-soluble cell fractions remained relatively constant. Cholesterol depletion of infected cells drastically altered the association of viral proteins with DRMs and resulted in an enhanced release of virus particles with reduced infectivity. Decreased infectivity was not due to effects on subsequent virus entry, since the extraction of cholesterol from intact virus did not significantly reduce infectivity. Particles released from cholesterol-depleted cells had very heterogeneous densities and altered ratios of NP and glycoproteins, demonstrating structural abnormalities which potentially contributed to their lowered infectivity. Taken together, these results indicate that lipid rafts, including cytoskeleton-associated lipid rafts, are sites of NDV assembly and that these domains are important for ordered assembly and release of infectious Newcastle disease virus particles.  相似文献   

15.
The prion protein and lipid rafts   总被引:1,自引:0,他引:1  
Prions are the causative agent of the transmissible spongiform encephalopathies, such as Creutzfeldt-Jakob disease in humans. In these prion diseases the normal cellular form of the prion protein (PrP(C)) undergoes a post-translational conformational conversion to the infectious form (PrP(Sc)). PrP(C) associates with cholesterol- and glycosphingolipid-rich lipid rafts through association of its glycosyl-phosphatidylinositol (GPI) anchor with saturated raft lipids and through interaction of its N-terminal region with an as yet unidentified raft associated molecule. PrP(C) resides in detergent-resistant domains that have different lipid and protein compositions to the domains occupied by another GPI-anchored protein, Thy-1. In some cells PrP(C) may endocytose through caveolae, but in neuronal cells, upon copper binding to the N-terminal octapeptide repeats, the protein translocates out of rafts into detergent-soluble regions of the plasma membrane prior to endocytosis through clathrin-coated pits. The current data suggest that the polybasic region at its N-terminus is required to engage PrP(C) with a transmembrane adaptor protein which in turn links with the clathrin endocytic machinery. PrP(C) associates in rafts with a variety of signalling molecules, including caveolin-1 and Fyn and Src tyrosine kinases. The clustering of PrP(C) triggers a range of signal transduction processes, including the recruitment of the neural cell adhesion molecule to rafts which in turn promotes neurite outgrowth. Lipid rafts appear to be involved in the conformational conversion of PrP(C) to PrP(Sc), possibly by providing a favourable environment for this process to occur and enabling disease progression.  相似文献   

16.
The route of initial entry influences how host cells respond to intracellular pathogens. Recent studies have demonstrated that a wide variety of pathogens target lipid microdomains in host cell membranes, known as lipid rafts, to enter host cells as an infectious strategy.  相似文献   

17.
Microbial entry through caveolae: variations on a theme   总被引:10,自引:5,他引:5  
Caveolae and lipid rafts are increasingly being recognized as a significant portal of entry into host cells for a wide variety of pathogenic microorganisms. Entry through this mechanism appears to afford the microbes protection from degradation in lysosomes, though the level to which each microbe actively participates in avoiding lysosomal fusion may vary. Other possible variations in microbial entry through caveolae or lipid rafts may include (i) the destination of trafficking after entry and (ii) how actively the microbe contributes to the caveolae lipid/raft mediated entry. It seems that, though a wide variety of microorganisms are capable of utilizing caveolae/lipid rafts in various stages of their intracellular lifestyle, there can be distinct differences in how each microbe interacts with these structures. By studying these variations, we may learn more about the normal functioning of these cellular microdomains, and perhaps of more immediate importance, how to incorporate the use of these structures into the treatment of both infectious and non-infectious disease.  相似文献   

18.
The major outer membrane protein (MOMP) of Chlamydia trachomatis carries serovar-, subspecies-, species- and genus immunodomains, antibodies to which may be protective. We have compared the inferred amino acid sequences for MOMP from different serovars of C. trachomatis and from Chlamydia psittaci to identify the likely locations of these sero-taxonomic epitopes. Overlapping peptides corresponding to each of these regions were synthesized on a solid phase and probed with monoclonal antibodies (MAbs) of appropriate specificities. We describe the primary structures of the binding sites of MAb to each of these four epitopes on C. trachomatis serovar L1 MOMP.  相似文献   

19.
Chlamydia pneumoniae, an obligate intracellular human pathogen, causes a number of respiratory diseases. We explored the role of the conserved OmcB protein in C. pneumoniae infections, using yeast display technology. (i) Yeast cells presenting OmcB were found to adhere to human epithelial cells. (ii) Pre-incubation of OmcB yeast cells with heparin, but not other glycosaminoglycans (GAGs), abrogated adhesion. (iii) Pre-treatment of the target cells with heparinase inhibited adherence, and GAG-deficient CHO cell lines failed to bind OmcB yeast. (iv) A heparin-binding motif present near the N-terminus of OmcB is required for host cell binding. (v) Pre-treatment of chlamydial elementary bodies (EBs) with anti-OmcB antibody or pre-incubation of target cells with recombinant OmcB protein reduced infectivity upon challenge with C. pneumoniae. (vi) Adhesion of fluorescently labelled EBs to epithelial or endothelial cells was abrogated by prior addition of heparin or OmcB protein. Thus, C. pneumoniae OmcB is an adhesin that binds heparan sulphate-like GAGs. OmcB from Chlamydia trachomatis serovar L1 also adheres to human cells in a heparin-dependent way, unlike its counterpart from serovar E. We show that a single position in the OmcB sequence determines heparin dependence/independence, and variations there may reflect differences between the two serovars in cell tropism and disease pattern.  相似文献   

20.
Caveolin-3, a muscle-specific caveolin-related protein, is the principal structural protein of caveolae membrane domains in striated muscle cells. Recently, we identified a novel autosomal dominant form of limb-girdle muscular dystrophy (LGMD-1C) in humans that is due to mutations within the coding sequence of the human caveolin-3 gene (3p25). These LGMD-1C mutations lead to an approximately 95% reduction in caveolin-3 protein expression, i.e. a caveolin-3 deficiency. Here, we created a caveolin-3 null (CAV3 -/-) mouse model, using standard homologous recombination techniques, to mimic a caveolin-3 deficiency. We show that these mice lack caveolin-3 protein expression and sarcolemmal caveolae membranes. In addition, analysis of skeletal muscle tissue from these caveolin-3 null mice reveals: (i) mild myopathic changes; (ii) an exclusion of the dystrophin-glycoprotein complex from lipid raft domains; and (iii) abnormalities in the organization of the T-tubule system, with dilated and longitudinally oriented T-tubules. These results have clear mechanistic implications for understanding the pathogenesis of LGMD-1C at a molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号