首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Coxsackieviruses (CV) are important human pathogens that have been implicated in the pathogenesis of several diseases, including myocarditis and pancreatitis. How the human immune system recognizes and controls CV infections is not well understood. Studies in mice suggest that natural killer (NK) cells play a critical role in viral clearance and host survival, but the mechanism(s) by which human NK cells may contribute to the host anti-CV defence has not been investigated. Here we show that CVB3 infection markedly reduces HLA class I cell surface expression but does not increase the expression of the activating NK cell receptor ligands MICA/B and ULBP1-3 on human cells. We also demonstrate that the lowered target cell HLA class I surface expression does not correlate with an increased susceptibility to NK cell-mediated killing. However, NK cells responded with a robust production of interferon γ (IFN-γ) when peripheral blood mononuclear cells were cocultured with infected cells. In summary, this study shows that CVB3 interferes with the expression of NK cell receptor ligands on infected cells and indicates that IFN-γ production, rather than cytotoxicity, marks the early human NK cell response to CVB3 infection.  相似文献   

2.
Natural killer (NK) cells play a critical role in the control of HIV-1 infection, and NK cells that respond to HIV-1 peptides have been recently described. However, the mechanisms by which NK cells recognize HIV-1 antigens are not fully understood. We investigated NK cell activation in response to HIV-1 peptides during early and chronic HIV-1 clade B infection using a whole-blood assay and multiparameter flow cytometry. Antibody-mediated NK cell activation in response to HIV-1 peptides was not detected in HIV-1-uninfected individuals. In contrast, 79% of individuals with chronic infection and 22% of individuals with early infection had detectable gamma interferon (IFN-γ) NK cell responses to HIV-1 antigens (P < 0.00001). IFN-γ- and tumor necrosis factor alpha (TNF-α)-producing NK cells most frequently targeted Env gp120 (median of 4% and range of 0 to 31% of all NK cells). NK cells rarely targeted other HIV-1 proteins such as Gag, Pol, and Nef. Antibody-mediated NK cell responses to peptides mapped predominantly to Env protein, required the presence of plasma or plasma IgG, and resulted in lower CD16 expression on NK cells, suggesting an antibody-mediated activation of NK cells. Further studies are needed to assess the consequences of these antibody-mediated NK cell responses for HIV-1 disease progression and vaccine-induced protection from infection.  相似文献   

3.
There is increasing evidence that the function of NK cells in patients with chronic hepatitis B (CHB) infection is impaired. The underlying mechanism for the impaired NK cell function is still unknown. Since myeloid dendritic cells (mDC) are potent inducers of NK cells, we investigated the functional interaction of mDC and NK cells in CHB and the influence of antiviral therapy. Blood BDCA1(+) mDC and NK cells were isolated from 16 healthy controls or 39 CHB patients at baseline and during 6 months of antiviral therapy. After activation of mDC with poly(I · C) and gamma interferon (IFN-γ), mDC were cocultured with NK cells. Phenotype and function were analyzed in detail by flow cytometry and enzyme-linked immunosorbent assay. Our findings demonstrate that on poly(I · C)/IFN-γ-stimulated mDC from CHB patients, the expression of costimulatory molecules was enhanced, while cytokine production was reduced. In cocultures of poly(I · C)/IFN-γ-stimulated mDC and NK cells obtained from CHB patients, reduced mDC-induced NK cell activation (i.e., CD69 expression) and IFN-γ production compared to those in healthy individuals was observed. Antiviral therapy normalized mDC activity, since decreased expression of CD80 and CD86 on DC and of HLA-E on NK cells was observed, while poly(I · C)/IFN-γ-induced cytokine production by mDC was enhanced. In parallel, successful antiviral therapy resulted in improved mDC-induced NK cell activation and IFN-γ production. These data demonstrate that CHB patients display a diminished functional interaction between poly(I · C)/IFN-γ activated mDC and NK cells due to impaired mDC function, which can be partially restored by antiviral therapy. Enhancing this reciprocal interaction could reinforce the innate and thus the adaptive T cell response, and this may be an important step in achieving effective antiviral immunity.  相似文献   

4.
Protection against cellular stress from various sources, such as nutritional, physical, pathogenic, or oncogenic, results in the induction of both intrinsic and extrinsic cellular protection mechanisms that collectively limit the damage these insults inflict on the host. The major extrinsic protection mechanism against cellular stress is the immune system. Indeed, it has been well described that cells that are stressed due to association with viral infection or early malignant transformation can be directly sensed by the immune system, particularly natural killer (NK) cells. Although the ability of NK cells to directly recognize and respond to stressed cells is well appreciated, the mechanisms and the breadth of cell-intrinsic responses that are intimately linked with their activation are only beginning to be uncovered. This review will provide a brief introduction to NK cells and the relevant receptors and ligands involved in direct responses to cellular stress. This will be followed by an in-depth discussion surrounding the various intrinsic responses to stress that can naturally engage NK cells, and how therapeutic agents may induce specific activation of NK cells and other innate immune cells by activating cellular responses to stress.  相似文献   

5.
Natural killer (NK) cells play an important role in innate host defenses against a variety of pathogens. A recent report described striking perturbations in the expression of NK cell inhibitory and activating receptors in viremic human immunodeficiency virus (HIV)-infected patients, leading to functional abnormalities in these cells. This finding provides a mechanistic insight into NK cell dysfunction and its possible contribution to the impairment of innate host defenses in HIV-infected individuals.  相似文献   

6.
7.
Mice injected intracerebrally with infectious influenza virus (60 hemagglutinin units) developed lethargy, seizures, comas, and died 2 to 5 days postinfection. As early as 6 h after infection, the cerebrospinal fluid (CSF) in these animals was infiltrated with polymorphonuclear cells, mononuclear leukocytes, and large granular lymphocytes. Potent natural killer (NK) cell activity was observed for both CSF and spleen cell populations over the same period. This NK cell activity correlated with interferon (IFN) levels in the CSF and serum. Treatment of lethally infected mice with either anti-IFN alpha-IFN beta or anti-ganglio-n-tetraoglyceramide antiserum ameliorated the disease, reduced mortality, and effected changes in the relative proportions of inflammatory cell populations infiltrating the CSF. The possible significance of IFN and NK cell activity in the development of this influenza virus-induced encephalopathy is discussed.  相似文献   

8.
Previous publications from this laboratory have demonstrated that agents such as methotrexate (MTX), 5-fluorodeoxyuridine (FUdR), trimethoprim, and D-glucosamine (D-GlcN), which are known to inhibit thymidylate synthesis, can augment human NK activity in vitro. Furthermore, this augmentation was inhibited by exogenous thymidine (TdR) at concentrations of 10(-6) to 10(-7) M. In this report, underlying mechanisms of action of FUdR, D-GlcN, and IFN are compared. Each of these agents increased the lytic activity of effector cells bound to targets but did not increase the percentage of conjugates formed. The augmentation could be induced in a population highly enriched for NK cells (Leu-1 lb positive in phenotype). FUdR and D-GlcN could not induce any augmentation in a Leu-1 lb-negative subpopulation whereas IFN could induce significant lytic activity. alpha-Amanitin, an inhibitor of RNA polymerase II, blocked the activation of NK activity by all three reagents; hence gene expression was required. Comparison of [35S]methionine-labeled proteins by two-dimensional gel electrophoresis revealed that six new proteins were induced in IFN-treated cells. Three of these were similar in pI and molecular weight to the newly synthesized proteins in the D-GlcN-treated cells. One protein was synthesized in increased amounts in the FuDR-treated cells and it was not common to either of the other treatments. Evidence to date is consistent with the hypothesis that separate mechanisms underlie the activation of NK cells by IFN and thymidylate synthesis inhibitors, although the existence of a final common pathway for all NK response modulators cannot be excluded at the present time.  相似文献   

9.
Patients with condyloma acuminatum were treated with subcutaneous injections of interferon alpha three times weekly for three weeks. Natural killer cell activity pre-treatment was the same for non-responders to interferon therapy as for responders. After two weeks of therapy, however, the natural killer cell activity of responders was significantly greater than that for non-responders. This difference in activity was also observed four weeks following therapy. It therefore appears that measurement of natural killer cell activity has value in predicting which patients with condyloma acuminatum will experience good clinical response to interferon therapy.  相似文献   

10.
In this study, we examined the functional status of human natural killer (NK) cells after their direct interaction with the NK-sensitive tumor target cell (TC), K562. Human peripheral blood lymphocytes depleted of adherent cells were incubated for 4 hr with unlabeled K562 cells at an effector cell (EC) to TC ratio of 2:1. After incubation, the EC were separated from the TC via centrifugation over a single-step Percoll gradient. K562-treated and separated EC were subsequently shown to be unable to lyse fresh K562 TC when retested in the standard chromium-release assay. Kinetic studies revealed that greater than 90% inactivation of NK cell-mediated cytotoxicity (CMC) could be achieved within 2 hr. Inactivation of NK-CMC by K562 was not caused by a specific loss of NK cells, as detected by changes in the expression of two NK cell-associated markers, Leu-7 and Leu-11, or to alterations in EC viability and target binding cell capacity. Interestingly, NK inactivation also occurred in medium devoid of extracellular calcium, although parallel testing of NK-CMC in the same medium resulted in no chromium release. NK inactivation, however, was significantly prevented when the EC and TC were co-incubated at 4 degrees C, or in medium without magnesium. Additional studies revealed that inactivation of NK-CMC could be achieved with another NK-sensitive, but not with an NK-resistant TC. Overall, we demonstrated that NK cells rapidly lost their lytic potential after direct interaction with a sensitive TC, although the cells remained viable, expressed the same percentage of Leu-7 and Leu-11, and could still bind the TC; and NK inactivation occurred in the absence of extracellular calcium, but not when EC and TC were incubated in medium without magnesium. These latter results provide evidence for an early event in the activation of human NK cells that is binding dependent, temperature sensitive, and independent of extracellular calcium.  相似文献   

11.
Human natural killer (NK) cell differentiation, characterized by a loss of NKG2A in parallel with the acquisition of NKG2C, KIRs, and CD57 is stimulated by a number of virus infections, including infection with human cytomegalovirus (CMV), hantavirus, chikungunya virus, and HIV-1. Here, we addressed if HSV-2 infection in a similar way drives NK cell differentiation towards an NKG2A(-)NKG2C(+)KIR(+)CD57(+) phenotype. In contrast to infection with CMV, hantavirus, chikungunya virus, and HIV-1, recurrent HSV-2 infection did not yield an accumulation of highly differentiated NK cells in human peripheral blood. This outcome indicates that human HSV-2 infection has no significant imprinting effect on the human NK cell repertoire.  相似文献   

12.
A flurry of recent reports on the role of activating and inhibitory forms of the killer cell immunoglobulin-like receptors (KIR) in natural killer (NK) cell activity against human immunodeficiency virus type 1 (HIV-1) have yielded widely divergent results. The role of the activating NK receptor encoded by the KIR3DS1 allele and its putative ligands, members of the HLA class I Bw4Ile80 cluster, in early HIV-1 disease is controversial. We selected 60 treatment-naïve adults for study from the OPTIONS cohort of individuals with early HIV-1 infection in San Francisco. We performed NK cell functional assays measuring gamma interferon (IFN-γ) and CD107a expression by NK cells in the unstimulated state and after stimulation by the major histocompatibility complex class I-deficient 721.221 B-lymphoblastoid cell line. In addition, we measured CD38 expression (a T-cell activation marker) on T and NK cells. Persons who have at least one copy of the KIR3DS1 gene had higher IFN-γ and CD107a expression in the unstimulated state compared to those who do not possess this gene. After stimulation, both groups experienced a large induction of IFN-γ and CD107a, with KIR3DS1 carriers achieving a greater amount of IFN-γ expression. Differences in effector activity correlating with KIR3DS1 were not attributable to joint carriage of HLA Bw4Ile80 and KIR3DS1. We detected a partial but not complete dependence of KIR3DS1 on the members of B*58 supertype (B*57 and B*58) leading to higher NK cell function. Possessing KIR3DS1 was associated with lower expression of CD38 on both CD8+ T and NK cells and with a loss or weakening of the known strong associations between CD8+ T-cell expression of CD38 mean fluorescence intensity and the HIV-1 viral load. We observed that possessing KIR3DS1 was associated with higher NK cell effector functions in early HIV-1 disease, despite the absence of HLA Bw4Ile80, a putative ligand of KIR3DS1. Carriage of KIR3DS1 was associated with diminished CD8+ T-cell activation, as determined by expression of CD38, and a disruption of the traditional relationship between viral load and activation in HIV-1 disease, which may lead to better clinical outcomes for these individuals.NK cell function is regulated by a family of receptors encoded by the killer cell immunoglobulin-like receptor (KIR) genes (18, 33). Within the KIR family, certain genes encode inhibitory receptors that recognize HLA class I ligands (i.e., HLA-Bw4 or HLA-C), whereas other KIR genes encode activating receptors which are not completely known. Studies on the role of KIRs in human immunodeficiency virus (HIV) disease have focused on the activating receptor encoded by the KIR3DS1 allele. However, recent genetic association and functional studies of KIR and HIV disease have yielded widely disparate results on the role of KIR3DS1 and its putative ligands, a subset of HLA class I-B alleles referred to as Bw4Ile80. The Bw4Ile80 cluster is a subset of HLA-B alleles that bear an isoleucine at position 80 in the α-1 helix, on the rim of the peptide-binding cleft. The inhibitory receptors encoded by KIR3DL1 alleles, which are highly related in the extracellular domains to the activating receptor encoded by KIR3DS1, specifically recognize HLA-Bw4 ligands (5). Because of this similarity, KIR3DS1 has been assumed to also recognize Bw4Ile80 ligands. In 2002, Martin et al. reported that HIV-infected individuals in the Multicenter AIDS Cohort Study possessing the KIR3DS1 allele demonstrated significantly delayed progression to AIDS, provided that the individuals also expressed a Bw4Ile80 allele (20).In 2005, Gaudieri et al. reported on the association of the entire KIR gene cluster and HLA class I in HIV disease progression in an Australian HIV cohort (8, 9). These authors observed a trend toward slowed CD4+ T-cell percent loss among those who carried both Bw4Ile80 and KIR3DS1 (8). However, this trend was not statistically significant, and Gaudieri et al. simultaneously observed an acceleration of time to AIDS (1987 definition) among joint KIR3DS1 and Bw4Ile80 carriers. In 2006, Qi et al. published a follow-up report from the Multicenter AIDS Cohort Study cohort documenting an association between the coexpression of KIR3DS1 and Bw4Ile80 and enhanced protection against certain opportunistic infections in HIV-infected individuals (26), an effect partially attributed to very modest differences in viral load. In 2007, our group observed that KIR3DS1 gene carriage was associated with higher CD4+ T-cell counts and hence protection against HIV type 1 (HIV-1) progression in early disease (4); however, we observed that this effect was not attributable to differences in the viral load and further was independent of Bw4Ile80. In other words, our analyses suggested that the KIR3DS1 and Bw4Ile80 genes were each associated with protection against HIV disease but via different mechanisms.Until recently, it was not clear if KIR3DS1 was expressed on the surface of NK cells; however, two recent reports have conclusively established that KIR3DS1 is expressed on NK cells (6, 24) and that expression is dose dependent, with higher expression for homozygotes. These studies also demonstrated that KIR3DS1 recognizes neither HLA-Bw4 nor HLA-Bw6 ligands, at least when these major histocompatibility complex (MHC) class I molecules are expressed on Epstein-Barr virus-transformed B-lymphoblastoid cell lines. Similarly, an independent study by another group reported that KIR3DS1 fails to bind to soluble Bw4Ile80 tetrameric complexes (10). In contrast, Alter et al. have presented results from in vitro cytotoxicity assays suggesting that target cells possessing HLA-Bw4Ile80 are better targets for NK cells possessing KIR3DS1 (1); however, no evidence was provided to confirm a physical interaction between the KIR3DS1 and HLA-Bw4 proteins.Here, we present a study of the NK cell phenotype and function in 60 treatment-naïve, recently HIV-1-infected persons with defined HLA-B and KIR3DS1/KIR3DL1 allotypes. We also measured the expression of CD38 on NK cells and CD8+ T cells, a widely used marker of disease progression and virulence in HIV research and a marker of immune activation. The expression of CD38, as measured by flow cytometry, is known to be elevated on CD8+ T cells in HIV disease, reaching steady-state levels in early HIV-1 infection (7), and predicts disease progression independently of the viral load (19). The individuals studied were selected from our recent genetic association study of KIR and HLA among 255 recently HIV-1-infected persons (4), in which KIR3DS1 carriage alone was associated with higher CD4+ T-cell counts, despite the absence of a difference in the viral loads. On the basis of these clinical findings, we performed this study to determine whether persons who carried the KIR3DS1 gene had enhanced NK cell phenotypic and functional profiles and if these profiles were further enhanced by carriage of the putative KIR3DS1 ligands encoded by HLA-Bw4Ile80 alleles. Flow cytometry-based detection of KIR3DS1 has been hampered by the absence of a monoclonal antibody that can bind to KIR3DS1 specifically and not cross-react with the related KIR3DL1 proteins (25). Hence, we used genotypic KIR assignments for our analyses rather than flow cytometry-based methods.  相似文献   

13.
How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the CNS. Intracerebral infection of RAG1(-/-) mice with a recombinant CXCL10-expressing murine coronavirus (mouse hepatitis virus) resulted in protection from disease and increased survival that correlated with a significant increase in recruitment and activation of natural killer (NK) cells within the CNS. Accumulation of NK cells resulted in a reduction in viral titers that was dependent on gamma interferon secretion. These results indicate that CXCL10 expression plays a pivotal role in defense following coronavirus infection of the CNS by enhancing innate immune responses.  相似文献   

14.
The cytotoxic activity of natural killer (NK) cells isolated from peripheral blood of 20 healthy donors and 34 patients with multiple sclerosis (MS) against labelled with H3-uridine target cells K-562 before and after their 1 hr treatment with reaferon (RF), T-activin (TA), myelopid (MP), opioid preparation dalargin (DL) as well as with combinations of TA, MP and DL with RF was studied in 14 hrs cytotoxic test. It has been shown that combination of RF with TA, MP and DL changed the regulatory action of these peptides on NK cell activity in healthy donors in vitro. The same combination of the preparations in patients with MS caused another changes in regulation of NK activity by them because NK cells in MS patients had had initially changed sensitivity to action of these regulatory polypeptides.  相似文献   

15.
16.
17.
When 13 B cell lines were phenotyped with a panel of B cell, stage-specific monoclonal antibodies and ordered with respect to differentiation state; their sensitivity to natural killer (NK) cell-mediated conjugate formation and cytolysis was found to be stage dependent. Target cell lines expressing an early B cell phenotype (B1+B2-CALLA+DU-ALL1 +/-) or an intermediate phenotype (B1+B2+CALLA-DU-ALL1+) were NK resistant. Late phenotypic B cells (B1+B2-CALLA-DU-ALL1-) were highly susceptible to NK cytolysis. Individual B cell lines when induced with sodium butyrate or retinoic acid expressed altered B cell phenotype and NK susceptibility. For example, SB, an intermediate B cell line and initially NK resistant, when induced to express a later B cell phenotype became NK sensitive. BJA.B, a late B cell line and initially NK sensitive, when induced to differentiate lost most of its sensitivity to natural killing. Since loss of the B2 antigen is associated with B cell activation, we further phenotyped the B cell lines and induced B cell lines with the 4F2 and 5E9 (anti-transferrin receptor) monoclonal reagents. All cell lines tested expressed each of these antigens, but with varying intensities. While the intensity of 4F2 expression appeared to correlate well with NK sensitivity on both resting and differentiated B cell lines, the intensity of 5E9 expression did not. Peripheral blood B cells express a similar pattern of reactivity to natural killing when stimulated with pokeweed mitogen (PWM) in vitro. B cell sensitivity to NK-mediated events peaked at day 4 of incubation and correlated with the loss of the B2 antigen and acquisition of the 4F2 and 5E9 antigens; sensitivity to natural killing was diminished in the presence of the PCA-1 antigen. The expression of the NK-susceptible phenotype among B cells appears to be differentiation stage- and activation state-dependent. It is during this period of ontogeny that the NK cell may cytolytically regulate the B cell transition to a plasma cell.  相似文献   

18.
19.
The identification and characterization of genetic loci that contribute to patterns of susceptibility/resistance to infection provide important insights into the mechanisms of innate and adaptive immunity. Genetic heterogeneity across the population makes the characterization of such traits in humans technically difficult; however, inbred animal models represent an ideal tool for such analyses. This review illustrates the power of mouse genetics as utilized for the identification and characterization of the locus conferring early resistance to murine cytomegalovirus infection, Cmv1. This locus encodes an activating C-type lectin receptor of the Ly49 family that promotes natural killer (NK) cell cytolysis of infected cells. Although NK cells are usually able to detect and destroy virally infected cells via recognition of the downregulation of MHC class I molecules, the Cmv1 locus provides the first example of an NK receptor that is able to mediate clearance of viral infection via direct recognition of a virally encoded protein.  相似文献   

20.
Dendritic cell activation and function in response to Schistosoma mansoni   总被引:2,自引:0,他引:2  
Dendritic cells (DC) are uniquely specialised for both antigen acquisition and presentation, linking innate and adaptive immunity. Their central role in the activation of na?ve T cells gives DC a strategic position in the control of immune responses. While the mechanisms by which viral, bacterial or protozoal pathogens interact with and activate DC are increasingly understood, much less is known about how these cells react to more complex organisms such as schistosomes. Recent studies have examined the impact on DC of antigens from different life cycle stages of Schistosoma mansoni and have revealed a DC phenotype quite distinct to that of conventional activation. Schistosome antigens elicit little of the cytokine secretion and costimulation that are abundantly triggered in DC by unicellular, proinflammatory pathogens and indeed may even actively inhibit such events. The DC response is not a null one, however, since S. mansoni-exposed DC still act as potent antigen presenting cells capable of generating a powerful Th2 immune response. Understanding the interaction between schistosomes and DC is therefore not only addressing fundamental questions of DC biology and immunity to multicellular parasites but also opens the way to therapeutic manipulation of the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号