首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Programmable implantable neurological stimulation systems with multiple electrodes have many advantages in clinical use, but time-consuming postoperative adjustment of stimulation parameters is a distinct disadvantage. A personal computer interface to standard commercial radiofrequency-coupled devices has been developed, permitting direct patient interaction to expedite this process. In addition, the system permits simulated multichannel operation and implementation of various modulation schemes.  相似文献   

2.
We report on the direct electrical interfacing of a recombinant ion channel to a field-effect transistor on a silicon chip. The ion current through activated maxi-K(Ca) channels in human embryonic kidney (HEK293) cells gives rise to an extracellular voltage between cell and chip that controls the electronic source-drain current. A comparison with patch-clamp recording shows that the channels at the cell/chip interface are fully functional and that they are significantly accumulated there. The direct coupling of potassium channels to a semiconductor on the level of an individual cell is the prototype for an iono-electronic interface of ligand-gated or G protein-coupled ion channels and the development of screening biosensors with many transfected cells on a chip with a large array of transistors.  相似文献   

3.
The electrolyte-pigment-metal system can be described as analogous to a photosensitive junction region. When the thickness of the pigment film is increased, the action spectra of the maximum short-circuit photocurrent under continuous illumination differ from the absorption spectra both in direct illumination (pigment-electrolyte) and in back illumination (metal-pigment). One is led to believe that there exist two photoactive regions in the system for the production of the short-circuit photocurrent; these two active regions are associated respectively with each interface. When the metallic semitransparent electrode is made of aluminum the two interfaces have opposite sign contributions to the photocurrent; this allows the determination of conditions in which one can observe specifically the contribution of the pigment-electrolyte interface, that is the interactions between excited pigment molecules and the redox system in the electrolyte.  相似文献   

4.
Cre recombinase catalyzes the cleavage and religation of DNA at loxP sites. The enzyme is a homotetramer in its functional state, and the symmetry of the protein complex enforces a pseudo-palindromic symmetry upon the loxP sequence. The Cre-lox system is a powerful tool for many researchers. However, broader application of the system is limited by the fixed sequence preferences of Cre, which are determined by both the direct DNA contacts and the homotetrameric arrangement of the Cre monomers. As a first step toward achieving recombination at arbitrary asymmetric target sites, we have broken the symmetry of the Cre tetramer assembly. Using a combination of computational and rational protein design, we have engineered an alternative interface between Cre monomers that is functional yet incompatible with the wild-type interface. Wild-type and engineered interface halves can be mixed to create two distinct Cre mutants, neither of which are functional in isolation, but which can form an active heterotetramer when combined. When these distinct mutants possess different DNA specificities, control over complex assembly directly discourages recombination at unwanted half-site combinations, enhancing the specificity of asymmetric site recombination. The engineered Cre mutants exhibit this assembly pattern in a variety of contexts, including mammalian cells.  相似文献   

5.
6.
An inexpensive interface is described that performs direct transfer of digitized data from the digital audio processor and video cassette recorder based data acquisition system designed by Bezanilla (1985, Biophys. J., 47:437-441) to an IBM PC/XT microcomputer. The FORTRAN callable software that drives this interface is capable of controlling the video cassette recorder and starting data collection immediately after recognition of a segment of previously collected data. This permits piecewise analysis of long intervals of data that would otherwise exceed the memory capability of the microcomputer.  相似文献   

7.
8.
The high affinity receptor for IgE, FcepsilonRI, binds IgE through the second Ig-like domain of the alpha subunit. The role of the first Ig-like domain is not well understood, but it is required for optimal binding of IgE to FcepsilonRI, either through a minor contact interaction or in a supporting structural capacity. The results reported here demonstrate that domain one of FcepsilonRI plays a major structural role supporting the presentation of the ligand-binding site, by interactions generated within the interdomain interface. Analysis of a series of chimeric receptors and point mutants indicated that specific residues within the A' strand of domain one are crucial to the maintenance of the interdomain interface, and IgE binding. Mutation of the Arg(15) and Phe(17) residues caused loss in ligand binding, and utilizing a homology model of FcepsilonRI-alpha based on the solved structure of FcgammaRIIa, it appears likely that this decrease is brought about by collapse of the interface and consequently the IgE-binding site. In addition discrepancies in results of previous studies using chimeric IgE receptors comprising FcepsilonRIalpha with either FcgammaRIIa or FcgammaRIIIA can be explained by the presence or absence of Arg(15) and its influence on the IgE-binding site. The data presented here suggest that the second domain of FcepsilonRI-alpha is the only domain involved in direct contact with the IgE ligand and that domain one has a structural function of great importance in maintaining the integrity of the interdomain interface and, through it, the ligand-binding site.  相似文献   

9.
Relative measurements of the concentration of CO2 released through the skin in rats in response to thermal stimulation were performed using a mass spectrometer with a membrane interface. It is demonstrated that the antinociceptive response to a pain stimulus during intraperitoneal propofol–lidocaine and propofol–ketamine anesthesia can be monitored using a mass spectrometer with a membrane interface. Lidocaine exerts direct action on the central nervous system and induces an antinociceptive effect in response to thermal stimulation.  相似文献   

10.
Atomistic simulations and experimental investigations are combined to study heterojunction interfaces of hybrid polymer solar cells, with the aim to better understand and precisely predict their photovoltaic properties. The focus is on a hybrid ternary model system based on a poly(3‐hexylthiophene) (P3HT)/zinc phthalocyanine (ZnPc)/ZnO interface, in which a ZnPc interlayer is applied to improve the performance of the hybrid interface. Theoretical predictions of the ternary system are validated against the properties of a concrete P3HT/ZnPc/ZnO planar heterojunction device. The theoretical predictions closely agree with the photovoltaic properties obtained in P3HT/ZnPc/ZnO solar cells, indicating the strength of the method for modeling hybrid heterojunction interfaces. The theoretical and experimental results reveal that: i) ZnPc molecules in direct contact with a ZnO surface insert new energy levels due to a strong ZnPc/ZnO coupling, ii) electron injection from these new energy levels of ZnPc into ZnO is highly efficient, iii) the ZnPc/ZnO coupling strongly influences the energy levels of the ZnO and P3HT leading to a reduction of the open circuit voltage, and iv) charge carrier recombination at the P3HT/ZnO interface is reduced by the ZnPc interlayer. The intercalation of ZnPc leads to an increase in photocurrent as well as to an overall increase in power conversion.  相似文献   

11.
12.
13.
It has long been suspected that microbial biofilms harbor cells in a variety of activity states, but there have been few direct experimental visualizations of this physiological heterogeneity. Spatial patterns of DNA replication and protein synthetic activity were imaged and quantified in staphylococcal biofilms using immunofluorescent detection of pulse-labeled DNA and also an inducible green fluorescent protein (GFP) construct. Stratified patterns of DNA synthetic and protein synthetic activity were observed in all three biofilm systems to which the techniques were applied. In a colony biofilm system, the dimensions of the zone of anabolism at the air interface ranged from 16 to 38 microm and corresponded with the depth of oxygen penetration measured with a microelectrode. A second zone of activity was observed along the nutrient interface of the biofilm. Much of the biofilm was anabolically inactive. Since dead cells constituted only 10% of the biofilm population, most of the inactive cells in the biofilm were still viable. Collectively, these results suggest that staphylococcal biofilms contain cells in at least four distinct states: growing aerobically, growing fermentatively, dead, and dormant. The variety of activity states represented in a biofilm may contribute to the special ecology and tolerance to antimicrobial agents of biofilms.  相似文献   

14.
The sediment-water interface in Halifax Harbor supports a microbial population of 6.95 × 109 cells per g (dry weight). As determined by the standard technique of suspending subsamples in filtered seawater, the uptake of added glutamic acid by this population is 113.5 ng g (dry weight)−1 h−1. An alternate technique was developed to measure the heterotrophic activity of the interface over longer periods of time, using undisturbed cores with the sediment-water interface intact. Under these conditions, the microbes in the water column and the interface increased exponentially in number, with mean doubling times of 9.6 and 4.5 days, respectively. The uptake of glutamic acid by the microbial population of the interface was determined to be 12.7 ng g (dry weight)−1 h−1, almost an order of magnitude less than the uptake determined by the previous method. This indicates that substrate diffusion and competition for substrate by the microbes in the water column are important factors when considering the heterotrophic activity of the sediment microbial population. After 48 h of incubation, uptake and respiration ceased, probably due to the exhaustion of labeled substrate. Additional substrate added after 48 h of incubation was taken up at a rate similar to that measured after the first addition. It appears that the microbial population of the interface is able to respond quickly and repeatedly to relatively large nutrient additions. After 10 days of incubation, the number of “viable” cells as determined by autoradiography was much smaller than the increase in numbers as determined by direct counts. Apparently a large part of the viable population is unaffected by nutrient addition.  相似文献   

15.
The stability issue that is obstructing commercialization of the perovskite solar cell is widely recognized, and tremendous effort has been dedicated to solving this issue. However, beyond the apparent thermal and moisture stability, more intrinsic semiconductor mechanisms regarding defect behavior have yet to be explored and understood. Herein, defects are quantified; especially interface defects, within the cell to reveal their impact on device performance and especially stability. Both the bulk and interface defects are distinguished and traced in situ using an expanded admittance model when the cell degrades in its efficiency under illumination or voltage. The electric field‐induced interface, rather than bulk defects, is found to have a direct correlation to stability. Releasing the interface strain using a fullerene derivative is an effective way to suppress interface defect formation and improve stability. Overall, this work provides a quantitative approach to probing the semiconductor mechanism behind the stability issue, and the inherent correlation discovered here among the electric field, interface strain, interface defects, and cell stability has important implications for ongoing device stability engineering.  相似文献   

16.
We report the development of a robust interface for off-line coupling of nano liquid chromatography (LC) to matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) and its application to the analysis of proteolytic digests of proteins, both isolated and in mixtures. The interface makes use of prestructured MALDI sample supports to concentrate the effluent to a small sample plate area and localize the MALDI sample to a predefined array, thereby enriching the analyte molecules and facilitating automated MALDI-MS analysis. Parameters that influence the preparation of MALDI samples from the LC effluent were evaluated with regard to detection sensitivity, spectra quality, and reproducibility of the method. A procedure for data processing is described. The presented nano LC MALDI-MS system allowed the detection of several peptides from a tryptic digest of bovine serum albumin, at analyzed amounts corresponding to one femtomole of the digested protein. For the identification of native proteins isolated from mouse brain by two-dimensional gel electrophoresis, nano LC MALDI-MS increased the number of detected peptides, thereby allowing identification of proteins that could not be identified by direct MALDI-MS analysis. The ability to identify proteins in complex mixtures was evaluated for the analysis of Escherichia coli 50S ribosomal subunit. Out of the 33 expected proteins, 30 were identified by MALDI tandem time of flight fragment ion fingerprinting.  相似文献   

17.
A new electroanalytical method of voltamperometry at the interface of two immiscible electrolyte solutions (ITIES) is based on electrochemical polarization of a liquid/liquid interface. The resulting current voltage characteristics completely resemble those obtained with metallic electrodes. The charge transfer processes are either the direct ion transfer across the ITIES or the transfer facilitated by macrocyclic ionophores. Determination of tetracycline antibiotics is based on the direct transfer of the cationic forms of these substances in acid media. Determination of valinomycin, nonactin and monensin acting as ion carriers is connected with the facilitated alkali metal ion transfer. In general, antibiotic concentrations higher than 0.02-0.05 mmol/l can be determined with this method. Monensin can also be determined in the extracts of Streptomyces cinnamonensis.  相似文献   

18.
The interface between two cells from the immune system has recently been coined "immunological synapse". The authors review recent findings concerning the structure of the synapse formed between T lymphocytes and antigen-presenting cells. T cells can be part of different synapses, depending on the antigen-presenting cell (B cell hybridoma, proteo-lipid bilayer, macrophage, dendritic cell). The synapse formed with dendritic cells is discussed in more details. A comparison is made with the synapses from the nervous system. Several parallel questions are discussed: how receptors can be clustered, what is the influence of synapse functioning on the structure of the synapse. It is suggested that in both cases two modes of communication exist in parallel: direct cell-cell contacts and soluble mediators, neurotransmitters in one case, putative immunotransmitters in the other.  相似文献   

19.
Lipid polymorphism plays an important role in the lung surfactant cycle. A better understanding of the influence of phase transitions on the formation of a lipid film from dispersions of vesicles will help to describe the mechanism of action of lung surfactant. The surface pressure (or tension) of dispersions of DPPC, DMPC, and DPPE unilamellar vesicles was studied as a function of temperature. These aggregates rapidly fuse with a clean air-water interface when the system is at their phase transition temperature (Tm), showing a direct correlation between phase transition and film formation. Based on these results, an explanation on how fluid aggregates in the alveolar subphase can form a rigid monolayer at the alveolar interface is proposed.  相似文献   

20.
Numerous reports show that both transfer and uptake of poorly-water soluble substrates are significantly enhanced in two-phase partitioning bioreactors (TPPBs). A number of hypotheses have been put forward to explain these enhancements and among them, the occurrence of direct substrate or oxygen uptake from the vector/water interface has been suggested. The objective of this paper was to quantify the direct oxygen uptake from the vector/water interface in a culture of Pseudomonas putida, performed in a stirred tank reactor, using glucose as substrate and silicone oil as vector. Despite of a sufficient dissolved O2 concentration in the vector phase (17 mg l−1) and a significant vector surface area (4,000 m−1) no significant direct O2 uptake from the vector/water interface was observed, compared to O2 uptake from the aqueous phase. From these results it was concluded that, direct O2 or substrate uptake from the vector/water interface might not be significant in TPPBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号