首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression.  相似文献   

5.
丁酸钠(Sodium butyrate,NaB)是一种组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACi),通过增加组蛋白的乙酰化,使染色质处于开放状态,便于基因转录与表达。多梳基因家族(Polycomb group genes,PcG)的成员Bmi-1蛋白可以对染色体组蛋白进行修饰,使一些抑癌基因如p14、P16和P21基因等表达沉默,同时Bmi-1蛋白通过Wnt信号通路激活原癌基因c-Myc,使Bmi-1、Wnt信号通路、c-Myc组成一个正反馈循环,还可以上调端粒酶的表达,导致肿瘤的发生。HDACi可以下调Bmi-1蛋白的表达,并通过上调p14、p16和p2l等的表达以及线粒体通路和Wnt信号通路抑制肿瘤细胞的增殖、分化,诱导肿瘤细胞凋亡。HDACi将可能为肿瘤的治疗提供一个广阔的前景,本研究将对Bmi-1在丁酸钠诱导肿瘤细胞凋亡过程中的作用机制作一综述。  相似文献   

6.
7.
The polycomb group (PcG) proteins, Bmi-1 and Ezh2, are important epigenetic regulators that enhance skin cancer cell survival. We recently showed that Bmi-1 and Ezh2 protein level is reduced by treatment with the dietary chemopreventive agents, sulforaphane and green tea polyphenol, and that this reduction involves ubiquitination of Bmi-1 and Ezh2, suggesting a key role of the proteasome. In the present study, we observe a surprising outcome that Bmi-1 and Ezh2 levels are reduced by treatment with the proteasome inhibitor, MG132. We show that this is associated with a compensatory increase in the level of mRNA encoding proteasome protein subunits in response to MG132 treatment and an increase in proteasome activity. The increase in proteasome subunit level is associated with increased Nrf1 and Nrf2 level. Moreover, knockdown of Nrf1 attenuates the MG132-dependent increase in proteasome subunit expression and restores Bmi-1 and Ezh2 expression. The MG132-dependent loss of Bmi-1 and Ezh2 is associated with reduced cell proliferation, accumulation of cells in G2, and increased apoptosis. These effects are attenuated by forced expression of Bmi-1, suggesting that PcG proteins, consistent with a prosurvival action, may antagonize the action of MG132. These studies describe a compensatory Nrf1-dependent, and to a lesser extent Nrf2-dependent, increase in proteasome subunit level in proteasome inhibitor-treated cells and confirm that PcG protein levels are regulated by proteasome activity.  相似文献   

8.
细胞衰老是指细胞生长永久阻滞于细胞周期的G1期,出现形态、生化及表观遗传的变化特性.细胞衰老由端粒缩短、DNA损伤、缺氧或癌基因失调等因素引起,它是抵抗肿瘤发生的主要壁垒.原癌基因c-myc编码转录因子,可调控很多基因,进而影响细胞周期演进、衰老、凋亡、代谢等生物学过程.c-Myc蛋白与细胞衰老密切相关,它可影响hTERT、p16、p53、Bmi-1和p27等衰老相关基因转录.c-Myc不仅可抑制复制性衰老,也能抑制癌基因诱发的衰老.c-Myc抑制ras诱导的细胞衰老取决于CDK2.c-Myc失活不仅能够诱导非恶性细胞(如人成纤维细胞)衰老,而且在许多肿瘤细胞中也可诱导衰老.然而,与ras基因类似,在特定条件下,c-Myc也可诱导细胞衰老,并可促进维氏综合症(Werner syndrome,WRN)缺失细胞的衰老.  相似文献   

9.
Yu Q  Su B  Liu D  Liu B  Fan Y  Wang Y  Meng X 《Oligonucleotides》2007,17(3):327-335
The oncogene Bmi-1 regulates cell proliferation and senescence. It is reported that it controlled the self-renewal of leukemic and breast cancer stem cell and was overexpressed in some solid tumors and hematologic malignancies. In this study, the effects of inactivation of Bmi-1 mediated by a plasmid-expressing antisense Bmi-1 RNA on the proliferation of lung cancer cell line A549 were investigated. As a result, when the plasmid was stably introduced into the cell line, the Bmi-1 protein level was specifically downregulated, and the cell proliferation was significantly inhibited as shown by the cell growth curve and colony forming assay. The cells were found mostly in the phase of G(0)/G(1) and cells in S phase were significantly decreased. Our results suggest that targeting Bmi-1 might be a therapeutic potential for the treatment of non-small-cell lung cancer.  相似文献   

10.
11.
The polycomb protein Bmi-1 represses the INK4a locus, which encodes the tumor suppressors p16 and p14(ARF). Here we report that Bmi-1 is downregulated when WI-38 human fibroblasts undergo replicative senescence, but not quiescence, and extends replicative life span when overexpressed. Life span extension by Bmi-1 required the pRb, but not p53, tumor suppressor protein. Deletion analysis showed that the RING finger and helix-turn-helix domains of Bmi-1 were required for life span extension and suppression of p16. Furthermore, a RING finger deletion mutant exhibited dominant negative activity, inducing p16 and premature senescence. Interestingly, presenescent cultures of some, but not all, human fibroblasts contained growth-arrested cells expressing high levels of p16 and apparently arrested by a p53- and telomere-independent mechanism. Bmi-1 selectively extended the life span of these cultures. Low O(2) concentrations had no effect on p16 levels or life span extension by Bmi-1 but reduced expression of the p53 target, p21. We propose that some human fibroblast strains are more sensitive to stress-induced senescence and have both p16-dependent and p53/telomere-dependent pathways of senescence. Our data suggest that Bmi-1 extends the replicative life span of human fibroblasts by suppressing the p16-dependent senescence pathway.  相似文献   

12.
13.
In response to hyperproliferative signaling elicited by transforming oncogenes some normal human cells can enter replicative senescence as a tumor defense mechanism. We recently found that human fibroblasts or endothelial cells with genetically-engineered reduction of proto-oncogene c-Myc expression switched with an increased frequency to a senescent state by a telomere-independent mechanism involving the polycomb group repressor Bmi-1 and the cyclin-dependent kinase inhibitor p16INK4a. The same regulatory circuit was triggered upon exposure to mild oxidative stress. These findings point to the existence of a mechanism for monitoring hypoproliferative signaling, whose function may be to limit the proliferation and accretion of physiologically compromised cells. This mechanism may be another example of antagonistic pleiotropy leading to organismal aging.  相似文献   

14.
The Polycomb group (PcG) gene products regulate the maintenance of the homeobox gene expression in Drosophila and vertebrates and also the cell cycle progression in thymocytes and Th2 cell differentiation in mature T cells. We herein studied the role of PcG gene bmi-1 product in Th1/Th2 cell differentiation and found that Bmi-1 facilitates Th2 cell differentiation in a Ring finger-dependent manner. Biochemical studies indicate that Bmi-1 interacts with GATA3 in T cells, which is dependent on the Ring finger of Bmi-1. The overexpression of Bmi-1 resulted in a decreased ubiquitination and an increased protein stability of GATA3. In bmi-1-deficient Th cells, the levels of Th2 cell differentiation decreased as the degradation and ubiquitination on GATA3 increased. Therefore, Bmi-1 plays a crucial role in the control of Th2 cell differentiation in a Ring finger-dependent manner by regulating GATA3 protein stability.  相似文献   

15.
16.
Cholangiocarcinoma is the second most common primary hepatic tumour originating from biliary tract epithelial cells with poor prognosis. Enhanced c-Myc protein expression contributes to many aspects of tumour cell biology. Although the ability of c-Myc to drive unrestricted cell proliferation and to inhibit cell differentiation had been well recognized, whether down-regulated c-Myc expression can inhibit tumour cell invasion still remains to be explored. The c-Myc ASODN (antisense oligodeoxyribonucleotide) and NSODN (nonsense oligodeoxyribonucleotide) were designed, synthesized and transfected into human QBC939 bile duct carcinoma cells using the Lipofectamine 2000 reagent. The protein expression of c-Myc was detected by Western blot. A transwell experiment was applied to evaluate the invasive capacity of the QBC939 cells. c-Myc ASODN could significantly suppress the c-Myc protein expression (P<0.05) and the invasion (P<0.01) of QBC939 cells transfected with c-Myc ASODN compared with that in the control and c-Myc NSODN-transfected group. Thus in the present study we show that down-regulation of c-Myc expression can inhibit the invasion of QBC939 cells in vitro.  相似文献   

17.
Recent work has identified dysfunctional Hippo signaling to be involved in maintenance and progression of various human cancers, although data on clear cell renal cell carcinoma (ccRCC) have been limited. Here, we provide evidence implicating aberrant Hippo signaling in ccRCC proliferation, invasiveness, and metastatic potential. Nuclear overexpression of the Hippo target Yes-associated protein (YAP) was found in a subset of patients with ccRCC. Immunostaining was particularly prominent at the tumor margins and highlighted neoplastic cells invading the tumor-adjacent stroma. Short hairpin RNA-mediated knockdown of YAP significantly inhibited proliferation, migration, and anchorage-independent growth of ccRCC cells in soft agar and led to significantly reduced murine xenograft growth. Microarray analysis of YAP knockdown versus mock-transduced ccRCC cells revealed down-regulation of endothelin 1, endothelin 2, cysteine-rich, angiogenic inducer, 61 (CYR61), and c-Myc in ccRCC cells as well as up-regulation of the cell adhesion molecule cadherin 6. Signaling pathway impact analysis revealed activation of the p53 signaling and cell cycle pathways as well as inhibition of mitogen-activated protein kinase signaling on YAP down-regulation. Our data suggest CYR61 and c-Myc as well as signaling through the endothelin axis as bona fide downstream effectors of YAP and establish aberrant Hippo signaling as a potential therapeutic target in ccRCC.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号