首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuropeptide Y (NPY) is an important regulator of energy balance in mammals through its orexigenic, antithermogenic, and insulin secretagogue actions. We investigated the regulation of endogenous NPY release from rat hypothalamic slices by NPY receptor ligands and calcium channel antagonists. High-potassium stimulation (60 mM) of the slices produced a calcium-dependent threefold increase in NPY release above basal release. The Y2 receptor agonists NPY(13-36) and N-acetyl[Leu28,Leu31]NPY(24-36), the Y4 agonist rat pancreatic polypeptide (rPP), and the Y4/Y5 agonist human pancreatic polypeptide (hPP) significantly reduced both basal and stimulated NPY release. NPY(13-36)-induced reduction of NPY release could be partially prevented in the presence of the weak Y2 antagonist T4-[NPY(33-36)]4, whereas the hPP- and rPP-induced inhibition of release was not affected by the Y5 antagonist CGP71683A or the Y1 antagonist BIBP3226. The selective Y1, Y2, and Y5 antagonists had no effect on either basal or potassium-stimulated release when administered alone. The calcium channel inhibitors omega-conotoxin GVIA (N-type), omega-agatoxin TK (P/Q-type), and omega-conotoxin MVIIC (Q-type) all significantly inhibited potassium-stimulated NPY release, without any effect on basal release, whereas nifedipine had no effect on either basal or stimulated release. Addition of both omega-conotoxin GVIA and omega-agatoxin TK together completely inhibited the potassium-stimulated release. In conclusion, we have demonstrated that NPY release from hypothalamic slices is calcium-dependent, involving N-, P-, and Q-type calcium channels. NPY release is also inhibited by Y2 agonists and rPP/hPP, suggesting that Y2 and Y4 receptors may act as autoreceptors on NPY-containing nerve terminals.  相似文献   

2.
Studies involving altered energy balance states in rodents have demonstrated that hypothalamic neuropeptide Y (NPY) activity is strongly activated in states of negative energy balance, such as periods of dietary restriction or starvation. However, in cancer cachexia, when there is a significant reduction in body weight as a result of appetite loss, leading to loss in fat and lean tissue mass, there is no augmentation in the activity of the hypothalamic NPY system. Therefore, we have examined whether cytokines, interleukin (IL)-1, IL-1beta, IL-6, and tumor-necrosis factor-alpha (TNF-alpha; cachectin), which are elevated in cancer patients, can attenuate NPY release from hypothalamic slices in vitro. None of the cytokines altered either the basal or stimulated NPY release from the hypothalamic slices. However, we were able to measure a significant reduction in potassium-stimulated NPY release (-60%) by using the nonselective voltage-dependent calcium channel blocker NiCl (30 microM) without any effect on basal release, as a positive control. Therefore, we suggest that the failure to activate the hypothalamic NPY system in states of cancer cachexia cannot be attributed to a cytokine-induced reduction in neurotransmitter release.  相似文献   

3.
Neuronal plasticity during the critical postnatal period of development seems to promote a change in the function of the hypothalamic regulatory system of body weight. Rats raised in small litters (SL) of only three pups per mother compared to ten or twelve in control litters (CL) gain significantly more weight than normal rats till weaning and are overweight also in later life. These rats are known to express hyperleptinemia, hyperglycemia and hyperinsulinemia. The review summarizes the results of action of leptin and insulin as well as of several feeding-relevant neuropeptides on neuronal activity of hypothalamic regulatory centres in overweight SL rats compared to controls. The study was performed on brain slices perfused with solution containing 10 mM glucose. Whereas a normally inhibitory action of leptin and insulin on medial arcuate neurons (ArcM) is reduced in SL rats and partly replaced by activation, the normally activating effect of these hormones on ventromedial (VMH) neurons is altered to predominant inhibition. Inhibition of ArcM neurons may decrease the release of the orexigenic neuropeptide Y (NPY) and agouti gene-related protein (AGRP). Thus, the negative feedback by leptin and insulin on food intake is replaced by diminished response and partly positive feedback processes in SL rats. The action of NPY and AGRP as well as of the orexigenic melanin-concentrating hormone on paraventricular (PVH) and VMH neurons is also shaped from activation or bimodal effects to predominant inhibition. Such inhibition of PVH and VMH might lead to reduced energy expenditure in small litter rats. Also the anorexigenic melanocortin alpha-MSH seems to contribute into increased energy storage. These altered responses of hypothalamic neurons in overweight small litter rats might reflect a general mechanism of neurochemical plasticity and "malprogramming" of hypothalamic neuropeptidergic systems leading to a permanently altered regulatory function.  相似文献   

4.
5.
Following central administration, neuropeptides that decrease the level of cAMP induce feeding. Conversely, cAMP activating neuropeptides tend to elicit satiety. When the inhibitory effect of neuropeptide Y (NPY) on the hypothalamic cAMP production was blocked by pertussis toxin, the potent orexigenic effect of NPY was lost. These findings suggest that there may be a link between hypothalamic cAMP and the central regulation of food intake. In this report, we show that the injection of the membrane-permeable cAMP agonist, adenosine-3',5'-cyclic monophosphorothioate Sp-isomer (Sp-cAMP), into perifornical hypothalamus (PFH) significantly inhibited schedule-induced and NPY-induced food intake for up to 4h. This inhibitory effect was normalized within 24h. A taste aversion could not be conditioned to Sp-cAMP treatment, suggesting that the anorectic response was not due to malaise. Sp-cAMP administration significantly increased the active protein kinase A (PKA) activity in dorsomedial (DMH) and ventromedial (VMH), but not in lateral (LH) hypothalamus. Consistently, food deprivation lowered, while refeeding normalized endogenous cAMP content in DMH and VMH, but not in LH areas. No significant effect of adenosine-3',5'-cyclic monophosphorothioate Rp-isomer (Rp-cAMP, cAMP antagonist) was observed on hypothalamic PKA activity, schedule-induced, or NPY-induced food intake. These findings suggest that the increase in cAMP level and PKA activity in DMH and VMH areas may trigger a satiety signal.  相似文献   

6.
Loss and disproportionate gain of body weight often seen respectively in smokers and quitters are believed to be due to disrupted energy homeostasis induced by nicotine, the major constituent of cigarette smoke. Energy homeostasis is suggested to be regulated by the coordinated actions of peripheral adipose tissue derived leptin and the brain hypothalamic orexigenic neuropeptide Y (NPY). While the studies probing the role of leptin and NPY in weight modulating effect of nicotine have so far been inconsistent and based largely on animal systems, there is a paucity of data involving human subjects. Here we measured the plasma levels of orexigenic neuropeptide Y (NPY) and leptin in 35 non-smokers and 31 cigarette smokers before and three months after smoking cessation. Compared to non-smokers, smokers were leaner and had reduced NPY and leptin levels. Smoking cessation resulted in a significant weight gain and increased waist circumference accompanied by increased leptin and NPY levels. NPY levels were significantly correlated with body weight (r=0.43, p<0.05), BMI (r=0.41, p<0.05), and waist circumference (r=0.37, p<0.05), while leptin correlated with BMI (r=0.42, p<0.05) and waist circumference (r=0.39, p<0.05). Association of leptin with smoking status, but not that of NPY, was lost after controlling for anthropometric parameters. Weight modulating effect of cigarette smoke may thus involve its direct action on NPY, independent of leptin. Altered leptin levels in smokers and quitters may merely reflect changes in body weight or precisely fat mass.  相似文献   

7.
8.
Broiler chicks eat more food than layer chicks. In this study, we examined the involvement of orexigenic peptide neuropeptide Y (NPY) in the difference in food intake between broiler and layer chicks (Gallus gallus). First, we compared the hypothalamic mRNA levels of NPY and its receptors (Y1 and Y5 receptors) between these strains at 1, 2, 4, and 8 days of age. Daily food intake was significantly higher in broiler chicks than layer chicks after 2 days of age. However, the hypothalamic NPY mRNA level was significantly lower in broiler chicks than layer chicks except at 8 days of age. In addition, the mRNA levels of NPY receptors were also significantly lower in broiler chicks than layer chicks at 2 and 4 days of age (Y1 receptor) or 2 days of age (Y5 receptor). These results suggest that the differences in the expressions of hypothalamic NPY and its receptors do not cause the increase in food intake in broiler chicks. To compare the orexigenic effect of NPY between broiler and layer chicks, we next examined the effects of central administration of NPY on food intake in these strains. In both strains, central administration of NPY significantly increased food intake at 2, 4 and 8 days of age. All our findings demonstrated that the increase in food intake in broiler chicks is not accompanied with the over-expression of NPY or its receptor.  相似文献   

9.
Neuropeptide Y (NPY) is a key factor in the neurochemical control of food intake, and obstructive cholestasis can be associated with disturbances in food intake. Our aim in this study was to determine whether obstructive cholestasis in the rat is associated with defective central responsiveness to NPY. Cholestasis was induced in rats by surgical bile duct resection. Rats with obstructive cholestasis exhibited a 20% reduction in food intake 2 days after laparotomy (compared with sham-resected controls) that had resolved by 4 days after surgery. Responsiveness to the orexigenic action of NPY was tested by measuring food intake after intracerebroventricular injection of NPY. In sham-resected rats, NPY infusion strikingly increased food intake, whereas bile duct-resected (BDR) rats showed a consistent significantly impaired feeding response to NPY at postlaparotomy days 2, 4, and 7. Separate experiments measured specific binding of [(3)H]NPY to hypothalamic receptors. Fos protein expression was measured in the hypothalamic paraventricular nucleus (PVN) as a marker of NPY-induced neuronal activation. The decreased orexigenic responsiveness to NPY was not caused by altered NPY binding at hypothalamic receptors or its ability to activate neurons in the PVN. Therefore, cholestatic rats demonstrate an attenuated NPY-induced orexigenic drive that occurs early after biliary obstruction, when cholestatic rats exhibit reduced food intake, and persists despite the return of food intake to normal levels and the presence of intact central NPY-related neuronal pathways.  相似文献   

10.
Maternal obesity due to long‐term high‐fat diet (HFD) consumption leads to faster growth in offspring during suckling, and increased adiposity at 20 days of age. Decreased expression of the orexigenic neuropeptide Y (NPY) and increased anorexigenic proopiomelanocortin (POMC) mRNA expression were observed in the fed state. However, hunger is the major drive to eat and hypothalamic appetite regulators change in response to meals. Therefore, it is important to compare both satiated and fasting states. Female Sprague–Dawley rats (8 weeks old) were fed a cafeteria‐style HFD (15.33 kJ/g) or chow for 5 weeks before mating, with the same diet continuing throughout gestation and lactation. At postnatal day 20, male pups were killed either after overnight fasting or in the fed state. Pups from obese dams were hyperphagic during both pre‐ and postweaning periods. Pups from obese dams had higher hypothalamic mRNA expression of POMC and NPY Y1 receptor, but lower hypothalamic melanocortin‐4 receptor (MC4R) and its downstream target single‐minded gene 1 (Sim1), in the fed state. Overnight fasting reduced circulating glucose, insulin, and leptin and increased hypothalamic NPY Y1 receptor mRNA in pups from both lean and obese dams. Hypothalamic NPY and agouti‐related protein (AgRP) were only increased by fasting in pups from obese dams; reductions in MC4R and Sim1 were only seen in pups from lean dams. At weaning, the suppressed orexigenic signals in offspring from obese dams were normalized after overnight fasting, although anorexigenic signaling appeared impaired in these animals. This may contribute to their hyperphagia and faster growth.  相似文献   

11.
The hypothalamic arcuate nucleus is a complex structure containing both orexigenic and anorexigenic neurons, coordinately regulated by leptin and energy state. In their recent Nature Neuroscience study, Aponte et al. (2011) use optogenetic technology to provide a glimpse into the consequences of exclusive activation of either NPY/AgRP or POMC neurons.  相似文献   

12.
13.
Yahya A  Xiao C  Chance WT  Sheriff S 《Peptides》2006,27(11):2731-2737
Neuropeptide Y (NPY) Y4 receptor (Y4R) in rat brainstem has been implicated in the signaling of satiety. In this study, we investigated the effects of leptin, and refeeding-induced satiety on Y4R mRNA expression in rat brainstem. Y4R receptor-specific primers were used to amplify the mRNA obtained from hypothalamus and brainstem utilizing conventional RT-PCR and quantitative real-time RT-PCR. No PCR product for Y4R was obtained from entire hypothalamic mRNA. Real-time RT-PCR showed a significant two-fold increase in the relative quantity of Y4R mRNA in brainstem of refed rats in comparison to food deprived or ad lib fed rats. Consistently, plasma leptin level was elevated in refed rats in comparison to food deprived rats. Similarly, leptin-treated rats exhibited a significant increase in Y4R mRNA in brainstem as compared to saline-injected rats. Plasma leptin was significantly elevated in leptin-treated rats. These results suggest that refeeding stimulates the expression of Y4R gene in the brainstem and that leptin may be one of the peripheral factors involved in this anorectic signaling mechanism.  相似文献   

14.
Neuropeptides,food intake and body weight regulation: a hypothalamic focus   总被引:7,自引:0,他引:7  
Hillebrand JJ  de Wied D  Adan RA 《Peptides》2002,23(12):2283-2306
Energy homeostasis is controlled by a complex neuroendocrine system consisting of peripheral signals like leptin and central signals, in particular, neuropeptides. Several neuropeptides with anorexigenic (POMC, CART, and CRH) as well as orexigenic (NPY, AgRP, and MCH) actions are involved in this complex (partly redundant) controlling system. Starvation as well as overfeeding lead to changes in expression levels of these neuropeptides, which act downstream of leptin, resulting in a physiological response. In this review the role of several anorexigenic and orexigenic (hypothalamic) neuropeptides on food intake and body weight regulation is summarized.  相似文献   

15.
While a dysregulation in neuropeptide Y (NPY) signaling has been described in rodent models of obesity, few studies have investigated the time-course of changes in NPY content and responsiveness during development of diet-induced obesity. Therefore we investigated the effect of differing lengths (2-17 weeks) of high-fat diet on hypothalamic NPY peptide content, release and NPY-induced hyperphagia. Male Sprague-Dawley rats (211 +/- 3 g) were fed either a high-fat diet (30% fat) or laboratory chow (5% fat). Animals were implanted with intracerebroventricular cannulae to investigate feeding responses to NPY (0.5 nmol, 1 nmol) after 4 or 12 weeks of diet. At the earlier stage of obesity, NPY-induced hyperphagia was not altered; however, animals maintained on the high-fat diet for the longer duration were hyper-responsive to NPY, compared to chow-fed control rats (p < 0.05). Overall, hypothalamic NPY peptide content tended to be decreased from 9 to 17 weeks of diet (p < 0.05). Total hypothalamic NPY content was negatively correlated with plasma leptin concentration (p < 0.05), suggesting the hypothalamic NPY system remains responsive to leptin's inhibitory signal. In addition, hypothalamic NPY overflow was significantly reduced in high-fat fed animals (p < 0.05). Together these results suggest a reduction in hypothalamic NPY activity in high-fat fed animals, perhaps in an attempt to restore energy balance.  相似文献   

16.
An acutely toxic dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to a drastically and permanently reduced feed intake and wasting by an unknown mechanism. We focused on the possible interference of TCDD with hypothalamic factors known to take part in the regulation of eating and metabolism, utilizing the over 1000-fold TCDD-sensitivity difference between Long-Evans (Turku/AB; L-E) and Han/Wistar (Kuopio) rats. The mRNA expression of 18 hypothalamic factors (including NPY, AgRP, and CART) was measured by quantitative RT-PCR at 6, 24 and 96 h after TCDD administration. The effects of TCDD were compared with those of leptin and with feed restriction employing a TCDD dose that elicited a severe reduction of feed intake in L-E rats. TCDD mainly modified expression of orexigenic factors causing an initial suppression followed by reversal to enhanced expression by 96 h. The latter was also seen in feed-restricted controls. In contrast, leptin altered both orexigenic and anorexigenic factor mRNAs in a more even manner and its effects were clustered at 6 h. The transient nature of feeding-promoting factor suppression does not strongly support a key role for this phenomenon in TCDD-induced wasting syndrome. However, the fact that TCDD mainly affected orexigenic factors and the temporal differences in response found between the rat strains warrant further research.  相似文献   

17.
The aim of the present study was to evaluate in hypothalamus and hindbrain of rainbow trout in vitro the effect of leptin treatment on glucosensing capacity and the expression of orexigenic and anorexigenic peptides involved in the control of food intake. In a first experiment, the response of parameters involved in glucosensing (GK, PK and GSase activities; GK expression and glucose; glycogen and DHAP levels) and the expression of orexigenic (NPY) and anorexigenic (POMC, CART, CRF) peptides was assessed in hypothalami and hindbrain incubated for 1 h with 2, 4 or 8 mM d-glucose alone (controls) or with 10 nM leptin, or with 10 nM leptin plus inhibitors of leptin signaling pathways (50 nM wortmannin and 500 nM AG490). Leptin treatment increased levels in parameters involved in glucosensing. Leptin treatment decreased NPY mRNA levels in hypothalamus without affecting the expression of the other peptides assessed. Leptin effects were reverted in the presence of inhibitors for all parameters assessed suggesting the involvement of JAK/STAT and IRS-PI(3)K pathways. In a second experiment, we observed time-dependent (1-3 h) and dose (10, 20 and 50 nM)- effects of leptin treatment in decreasing NPY mRNA levels without affecting expression of the other peptides assessed. Considering the orexigenic action of NPY in fish, it seems that the anorexic effect of leptin can be mediated by reduced expression of NPY occurring in hypothalamus, and that change can be related to the activation of the glucosensing system occurring simultaneously.  相似文献   

18.
Weight loss normally stimulates hunger, through mechanisms that include falls in circulating leptin and insulin, leading to stimulation of hypothalamic neuropeptide Y (NPY). Here, we investigated the leptin, insulin and NPY to clarify why hunger is suppressed in mice with severe cachexia due to the MAC16 adenocarcinoma. MAC16-bearing mice progressively lost weight (19% below controls) and fat (- 61%) over 16 days after tumour transplantation, while total food intake fell by 10%. Pair-fed mice showed less wasting, with final weight being 9% and fat mass 25% below controls. Plasma leptin fell by 85% in MAC16 and 51% in pair-fed mice, in proportion to loss of fat. Plasma insulin was also reduced by 49% in MAC16 and 53% in pair-fed groups. Hypothalamic leptin receptor (OB-Rb) mRNA was significantly increased in both MAC16 (+ 223%) and pair-fed (+192%) mice. Hypothalamic NPY mRNA was also significantly raised in MAC16 (+152%) and pair-fed (+ 99%) groups, showing negative correlations with plasma leptin and insulin, and a positive association with OB-Rb mRNA. In MAC16-induced cachexia, leptin production and hypothalamic OB-Rb and NPY expression are regulated appropriately in response to fat depletion. Therefore, suppression of hunger is probably due to tumour products that inhibit NPY transport or release, or that interfere with neuronal targets downstream of NPY.  相似文献   

19.
20.
Neuropeptide Y (NPY) participates in the regulation of reproduction and food intake. The adipose-secreted hormone, leptin, has also been involved in these processes, and has been shown to exert its effects in part by controlling NPY synthesis and release at the hypothalamic level. In the present study, we utilized the SH-SY5Y human neuroblastoma cell line, to study the leptin-NPY interrelationships. SH-SY5Y cells were found to express leptin receptors (RT-PCR and Western blot analyses). A 24-h treatment with leptin at different concentrations did not affect NPY gene expression, but resulted in a stimulation of NPY release. This stimulated secretion was blocked by the combined treatment with leptin and the muscarinic agonist carbachol or the phorbol ester TPA. Leptin and carbachol also caused an increased intracellular content of NPY. In conclusion, the SH-SY5Y human neuroblastoma cell line appears to be a suitable in vitro model for studying the pharmacological effects of leptin on the biosynthesis and secretion of NPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号