首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M E Lee  T Nowak 《Biochemistry》1992,31(7):2172-2180
A new, more gentle enzyme purification for yeast enolase was developed. A series of kinetic experiments was performed with yeast enolase where the concentration of Mg(II) is kept constant and at the Km' level; the addition of Mn(II), Zn(II), or Cu(II) gives a hyperbolic decrease in the enzyme activity. The final velocity of these mixed-metal systems is the same as the velocity obtained only with Mn(II), Zn(II), or Cu(II), respectively. The concentration of the second metal that gives half-maximal effect in the presence of Mg(II) is approximately the same as the apparent Km (Km') value measured for that cation alone. Direct binding of Mn(II) to apoenolase in the absence and presence of Mg(II) shows that Mn(II) and Mg(II) compete for the same metal site on enolase. In the presence of D-2-phosphoglycerate (PGA) and Mg(II), only a single cation site per monomer is occupied by Mn(II). Water proton relaxation rate (PRR) studies of enzyme-ligand complexes containing Mn(II) and Mn(II) in the presence of Mg(II) are consistent with Mn(II) binding at site I under both conditions. PRR titrations of ligands such as the substrate PGA or the inhibitors orthophosphate or fluoride to the enolase-Mn(II)-Mg(II) complex are similar to those obtained for the enolase-Mn(II) complex, also indicating that Mn(II) is at site I in the presence of Mg(II). High-resolution 1H and 31P NMR was used to determine the paramagnetic effect of enolase-bound Mn(II) on the relaxation rates of the nuclei of the competitive inhibitor phosphoglycolate. The distances between the bound Mn(II) and the nuclei were calculated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The binding of Cu2+ and Mn2+ to the ionophore A23187 in chloroform, 90% ethanol, and sonicated phospholipid dispersions in aqueous mediums has been investigated with electron paramagnetic resonance (epr). The spectra indicated axial symmetry for the Cu2+ complexes and distorted octahedral for the Mn2+ complexes. The coordination between metal ion and its ligands is predominantly ionic in character. The stoichiometry, at the concentrations employed, was found to be 1:2 M2+/ionophore except in 90% ethanol where evidence existed for the 1:1 Cu-A23187 complex, as well. Through competition with Mn2+, the sequence of relative affinities in 90% ethanol was measured to be: Mn2+ greater than La3+ greater than Cu2+ greater than Ca2+ greater than Mg2+ greater than Sr2+. The K A of Mn-A23187 binding is greater than 10 10 M-2. In phospholipid dispersions the spectral characteristics of the Cu complex, particularly g, were observed to be a sensitive function of the hydrocarbon chain mobility. This allowed a calculation of the rotational correlation time of the complex to be made. In sonicated dipalmitoyllecithin was computed to be 10-9 sec, reflecting a local viscosity similar to that sensed by the nitroxide spin-label 2,2,6,6-tetramethylpiperidin-1-oxyl. In a (1:1) lecithin-cholesterol dispersion the complex was significantly more immobilized.  相似文献   

3.
25Mg NMR spectroscopy was used to study the interactions of the activating cations with their respective binding sites in the enzymes yeast enolase and rabbit muscle pyruvate kinase (PK). Titration of Mg2+ with enolase allows for the calculation of 1/T2 for Mg2+ bound at site I of 1510 s-1 and a quadrupolar coupling constant chi = 0.30 MHz. Titration of Mg2+ with enolase in the presence of 2-phosphoglycerate (PGA) and Zn2+, where Zn2+ binds specifically at site I, gives a 1/T2 for Mg2+ bound at site II of 4000 s-1 (chi = 0.49 MHz). The Mg2+ at site II appears to be more anisotropic than Mg2+ at site I. The titration of site I of the enolase-Mg-PGA-Mg complex with Zn2+ or Mn2+ shows a simple displacement of the Mg2+. No paramagnetic effects by Mn2+ on 25Mg relaxation were observed. Temperature studies of the 25Mg resonance show that fast exchange of the Mg2+ occurs under these conditions. From the lack of a paramagnetic effect, the distance between the cations at sites I and II must be more than 6-9 A. This distance limits the location, hence the function, of the cation at site II for catalytic activity. Titration of Mg2+ with PK gives a 1/T2 for bound Mg2+ of 2200 s-1 (chi = 0.24 MHz). A titration of Mg2+ with PK in the presence of the inhibitor oxalate gives a 1/T2 of 400 s-1. The temperature dependence of 25Mg relaxation in the PK-Mg-oxalate complex is consistent with slow exchange (Ea = 6.1 +/- 1.6 kcal/mol). The enzyme-bound cation is more tightly sequestered by the addition of a ligand that binds directly to the cation. An investigation of the 25Mg relaxation in the PK-Mn-oxalate-Mg-ATP complex, where the Mg2+ is bound to the nucleotide and the Mn2+ was enzyme bound, was not successful due to precipitation of PK under experimental conditions and the short T2 relaxation for 25Mg in this complex. The applications of 25Mg NMR have been useful in partially describing the properties of the bound Mg2+ in these two metal-requiring enzymes.  相似文献   

4.
R R Poyner  G H Reed 《Biochemistry》1992,31(31):7166-7173
Phosphonoacetohydroxamate (PhAH) is a tight-binding (Ki = 15 pM) inhibitor of enolase that is believed to mimic the aci-carboxylate form of the intermediate carbanion in the reaction [Anderson, V. E., Weiss, P. M., & Cleland, W. W. (1984) Biochemistry 23, 2779]. Electron paramagnetic resonance (EPR) spectroscopy of Mn2+ has been used to map sites of interaction of PhAH with the two divalent cations at the active site of enolase from bakers' yeast. EPR spectra of enolase-PhAH complexes containing two Mn2+ bound at the active site contain multiple fine structure transitions each with a 45-G 55Mn hyperfine spacing that is a characteristic of spin exchange coupled pairs of Mn2+. Magnetically dilute complexes were obtained by preparation of specific Mg2+/Mn2+ hybrid complexes by manipulating the order of addition of the divalent metal species. Thus, Mn2+ was placed in the higher affinity site by addition of 1 equiv of Mn2+ to a solution of enolase and PhAH, followed by addition of 1 equiv of Mg2+. Reversing the order of addition of Mg2+ and Mn2+ placed Mn2+ in the lower affinity site. Regiospecifically 17O-labeled forms of PhAH were prepared, and the binding of the functional groups on PhAH to Mn2+ at the two metal ion sites was determined from the presence or absence of 17O superhyperfine coupling in the EPR signals. The hydroxamate oxygen is a ligand of Mn2+ at the higher affinity site, a phosphonate oxygen is a ligand of Mn2+ at the lower affinity site, and the carbonyl oxygen is a mu-O bridge of the two metal ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Enolase from rabbit muscle (betabeta-enolase) is inactivated by NaClO(4). Enolase free of divalent cations is more susceptible to inactivation by NaClO(4) than is enolase in the presence of Mg(2+). We find that substrate protects apo-enolase against inactivation, indicating that substrate can bind to enolase in the absence of a divalent cation. This binding is not due to contamination by trace levels of divalent cations since (1) it occurs even in the presence of EDTA or EGTA and (2) metal analysis by ICP (inductively coupled plasma) mass spectrometry did not reveal sufficient contamination to account for the protection. The binding of PGA to apo-enolase did require Na(+). When TMAClO(4) was used instead of NaClO(4), there was no protection by PGA. Protection was restored when TMAClO(4) plus NaCl were used. The inactivation of apo-enolase by NaClO(4) is due to dissociation into inactive monomers. We conclude that Na(+) binds to apo-enolase, permitting substrate to then bind. Of the three known Me(2+) binding sites on enolase, we believe the most likely binding site for Na(+) is the carboxylate cluster of site 1, the highest affinity site of enolase.  相似文献   

6.
For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in an acidic buffer. This represents the first production of the apoenzyme and demonstrates a rigorous method for removing the occult cofactor. Restoration to the holoenzyme is achieved with stoichiometric amounts of either Zn2+ or Co2+ yielding at least 95% of initial activity. Far UV CD and fluorescence spectra are the same for both the apo- and holoenzyme, providing evidence that removal of the cofactor does not alter secondary or tertiary structure. The substrate binding site remains functional as determined by similar quenching measured by tryptophan fluorescence of apo- or holoenzyme upon mixing with the transition state analog, deoxycoformycin. Excess levels of adenosine or N6- methyladenosine incubated with the apoenzyme prior to the addition of metal prevent restoration, suggesting that the cofactor adds through the substrate binding cleft. The cations Ca2+, Cd2+, Cr2+, Cu+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+, or Mg2+ did not restore adenosine deaminase activity to the apoenzyme. Mn2+, Cu2+, and Zn2+ were found to be competitive inhibitors of the holoenzyme with respect to substrate and Cd2+ and Co2+ were noncompetitive inhibitors. Weak inhibition (Ki > or = 1000 microM) was noted for Ca2+, Fe2+, and Fe3+.  相似文献   

7.
It has generally been concluded that two divalent cations are required for enolase activity, even though the enzyme is a homodimer that specifically binds four metal ions in the presence of substrate. This paper reports a reinvestigation of the stoichiometry of enolase activation. Specific ion electrode measurements of Mg2+ binding in the presence and absence of substrate are compared with stopped-flow measurements of the velocity of 2-phosphoglycerate dehydration. It is concluded that the enzyme is inactive when only two metal-binding sites are filled and that four sites must be populated with Mg2+ for full activity. An ordered binding mechanism is proposed that quantitatively predicts the activation of enolase by the four Mg2+ ions from their measured dissociation constants and the Michaelis constant for the dehydration reaction. To explain the loss of enzymatic activity at still higher metal concentrations, the binding of additional, inhibitory Mg2+ ions is postulated.  相似文献   

8.
Electron paramagnetic resonance (epr) and ultraviolet difference spectroscopy of vanadyl conalbumin indicate a binding capacity of two vanadyl ions, VO2+, per protein molecule in the pH 8–11 range; the binding capacity drops in the pH 6–8 range with an apparent pKa′ = 6.6. Iron-saturated conalbumin does not bind vanadyl ions, which suggests common binding sites for iron and vanadium. Ultraviolet difference spectroscopy indicates 2–3 tyrosines are involved in the binding of each metal ion; pH titrations show that three protons are released per vanadyl ion bound by conalbumin. Room and liquid nitrogen temperature X-band (ca. 9.2–9.5 gHz) epr spectra show that the vanadyl ion binds in three magnetically distinct environments (A, B, and C) that arise from interconvertible metal site configurations. These configurations are probably examples of conformational substrates of the protein. Q-band (ca 34 gHz) epr spectra resolve the spectral features more clearly and show that two configurations (A and B) have axially symmetric epr parameters but angles of noncoincidence of 12° and 8°, respectively, between the z components of the g and nuclear hyperfine tensors. The third (C) configuration has rhombic magnetic symmetry and a 6° angle of noncoincidence. These observations demonstrate that the metal sites are of low symmetry and are flexible in their geometry about the metal.The isotropic g and nuclear hyperfine tensor values and the line widths used in computer-simulated epr spectra are consistent with four oxygen or three oxygen and one nitrogen donor atoms binding equatorially to the VO2+ group. The apparent stability constant indicates that vanadyl ion binds to conalbumin approximately twelve orders of magnitude more weakly than iron to human serotransferrin but still sufficiently strongly to overcome hydrolysis.  相似文献   

9.
In the presence of 10 micrometer Ca2+ and 5 mM Mg2+ (or 0.25 mM Mg2+), the addition of 100 micrometer Zn2+, Ni2+, Co2+, Fe2+, Cu2+ or 1 mM Mn2+ resulted in varying degrees of stimulation or inhibition of 10(-6) M cyclic GMP and cyclic AMP hydrolysis by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart in the absence or presence of phosphodiesterase activator. The substrate specificity of the enzyme was altered under several conditions. The addition of Zn2+ in the presence of 5 mM Mg2+ and the absence of activator resulted in the stimulation of cyclic GMP hydrolysis over a narrow substrate range while reducing the V 65% due to a shift in the kinetics from non-linear with Mg2+ alone to linear in the presence of Zn2+ and Mg2+. Zn2+ inhibited the hydrolysis of cyclic GMP and cyclic AMP in the presence of activator with Ki values of 70 and 100 micrometer, respectively. Zn2+ inhibition was non-competitive with substrate, activator and Ca2+ but was competitive with Mg2+. In the presence of 10 micrometer Ca2+ and activator, a Ki of 15 micrometer for Zn2+ vs. Mg2+ was noted in the hydrolysis of 10(-6) M cyclic GMP. Several effects of Zn2+ are discussed which have been noted in other studies and might be due in part to changes in cyclic nucleotide levels following phosphodiesterase inhibition.  相似文献   

10.
The effects of hydrostatic pressure on yeast enolase have been studied in the presence of 1 mm Mn(2+). When compared with apo-enolase, and Mg-enolase, the Mn-enzyme differs from the others in three ways. Exposure to hydrostatic pressure does not inactivate the enzyme. If the experiments are performed in the presence of 1 mm Mg(2+), or with apo-enzyme, the enzyme is inactivated [Kornblatt, M.J., Lange R., Balny C. (1998) Eur. J. Biochem 251, 775-780]. The UV spectra of the high pressure forms of the Mg(2+)- and apo-forms of enolase are identical and distinct from the spectrum of the form obtained in the presence of 1 mm Mn(2+); this suggests that Mn(2+) remains bound to the high pressure form of enolase. With Mn-enolase, the various spectral changes do not occur in the same pressure range, indicating that multiple processes are occurring. Pressure experiments were performed as a function of [Mn(2+)] and [protein]. One of the changes in the UV spectra shows a dependence on protein concentration, indicating that enolase is dissociating into monomers. The small changes in the UV spectrum and the retention of activity lead to a model in which enolase, in the presence of high concentrations of Mn(2+), dissociates into native monomers; upon release of pressure, the enzyme is fully active. Although further spectral changes occur at higher pressures, there is no inactivation as long as Mn(2+) remains bound. We propose that the relatively small and polar nature of the subunit interface of yeast enolase, including the presence of several salt bridges, is responsible for the ability of hydrostatic pressure to dissociate this enzyme into monomers with a native-like structure.  相似文献   

11.
The activation of yeast enolase by cobaltous ion in 0.1 M KCl is characterized by an activation constant of 1 microM and an inhibition constant of 18 microM. Measurements of binding of Co2+ to the apoenzyme show that a maximum of four Co2+ ions are bound per dimer in the presence or absence of substrate although binding is far tighter in the presence of substrate. Ultraviolet spectral titrations show evidence for a conformational change due exclusively to the binding of the first two ions of Co2+. Both visible and EPR spectra confirm that the environment of the first pair of cobalt ions ("conformational sites") is markedly different from that of the second pair in the "catalytic" sites. Cobalt at the conformational site appears to be a tetragonally distorted octahedral complex while the second pair of metal ions appears to be in a more regular tetrahedral symmetry. Addition of either Mg2+ or substrate to the enzyme with only one pair of cobalt ions per dimer causes striking changes in the metal ion environment. The conformational metal sites appear sufficiently shielded from solvent to be inaccessible to oxidation by H2O2, in contrast to the second pair of cobaltous ions whose ready oxidation by H2O2 inactivates the enzyme. Comparison of kinetic and binding data suggests that only one site of the dimeric enzyme can be active, since activity requires more than two metals bound per dimer and inactivation results from the binding of the fourth ion per dimer.  相似文献   

12.
L Lebioda  B Stec 《Biochemistry》1991,30(11):2817-2822
Enolase in the presence of Mg2+ catalyzes the elimination of H2O from 2-phosphoglyceric acid (PGA) to form phosphoenolpyruvate (PEP) and the reverse reaction, the hydration of PEP to PGA. The structure of the ternary complex yeast enolase-Mg2(+)-PGA/PEP has been determined by X-ray diffraction and refined by crystallographic restrained least-squares to an R = 16.9% for those data with I/sigma (I) greater than or equal to 2 to 2.2-A resolution with a good geometry of the model. The structure indicates the substrate molecule in the active site has its hydroxyl group coordinated to the Mg2+ ion. The carboxylic group interacts with the side chains of His373 and Lys396. The phosphate group is H-bonded to the guanidinium group of Arg374. A water molecule H-bonded to the carboxylic groups of Glu168 and Glu211 is located at a 2.6-A distance from carbon-2 of the substrate in the direction of its proton. We propose that this cluster functions as the base abstracting the proton in the catalytic process. The proton is probably transferred, first to the water molecule, then to Glu168, and further to the substrate hydroxyl to form a water molecule. Some analogy is apparent between the initial stages of the enolase reverse reaction, the hydration of PEP, and the proteolytic mechanism of the metallohydrolases carboxypeptidase A and thermolysin. The substrate/product binding is accompanied by large movements of loops Ser36-His43 and Ser158-Gly162. The role of these conformational changes is not clear at this time.  相似文献   

13.
Electron paramagnetic resonance (epr) studies demonstrate that at low levels of conalbumin (CA) saturation with Fe3+ or VO2+, a ph-dependent preference of the metal exists for different protein binding-site configurations,A, B, and C. The vanadyl ion epr spectra of mixed VO2+, Fe3+-conalbumin in which Fe3+ is preferentially bound to the N- or C-terminal binding site are consistent with all three configurations being formed at both metal sites. At high pH the spectra suggest interaction between binding sites. In the absence of HCO3?, VO2+ is bound almost exclusively in B configuration; a full binding capacity of 2 VO2+ per CA is retained. Stoichiometric amounts of HCO3? convert the epr spectrum from B to an A, B, C type. Addition of oxalate to bicarbonate-free preparations converts the B spectrum to an A′, B, C′ type where the B resonances have lost intensity to the A′ and C′ resonances but have not changed position. The data suggest that configuration B is anion independent and that only one equivalent of binding sites at pH 9 responds to the presence of HCO31? or oxalate by changing configuration but not metal binding capability. The form of the bound anion may be HCO3? rather than CO32?. The formation rate of the colored ferric conalbumin complex by oxidizing Fe2+ to Fe3+ in limited HCO3? at pH 9 is also consistent with one equivalent of sites having different anion requirements than the remaining sites. Increased NaCl or NaClO4 concentration or substitution of D2O for water as solvent affect the environment of bound VO2+, but the mechanisms of action are unknown.  相似文献   

14.
K Grizzuti  G E Perlmann 《Biochemistry》1975,14(10):2171-2175
Dialysis equilibrium measurements at 25 degrees indicate that, at pH 6.8 and at a concentration of 1.0 times 10(-10) 3 M MnC12 or CoC12, phosvitin binds 113 Mn2+ and 120 Co2+. The binding is cooperative at low cation concentrations. The number of Mg2+, Ca2+, Mn2+, and Co2+ bound is not affected by temperatures of up to 60 degrees; however, the cooperactivity is enhanced. Optical rotatory dispersion and circular dichroism studies indicate that a conformational change occurs on binding of Mn2+ and Co2+ which parallels the one produced by Ca2+ and reported elsewhere [Grizzuti, K., and Perlmann, G.E. (1973), Biochemistry 12, 4399]. The conformational changes induced by Mg2+ and Mn2+ follow different paths. Upon binding of Mn2+ and Co2+ the intrinsic viscosity, [eta], of phosvitin decreases from about 0.5 to 0.03 dl/g, while Mg2+ and Ca2+ decrease [eta] to 0.048 dl/g. The ultraviolet absorption spectrum of phosvitin is altered upon binding of Ca2+, Mn2+, and Co2+, but not upon binding of Mg2+; an increase of the temperature to 60% has no further effect on the spectra.  相似文献   

15.
The ability of bovine pancreatic DNAase to hydrolyse the synthetic substrate p-nitrophenyl phenylphosphonate (NPPP) is intrinsic and is not due to the contamination of the DNAase preparation by nonspecific phosphodiesterases because the activities of DNA and NPPP hydrolysis are co-eluted from a DEAE-cellulose column with use of the Ca2+-affinity elution method and because the two activities are decreased simultaneously when the purified enzyme is treated with Cu2+/iodoacetate, an active-site-labelling agent for DNAase. NPPP hydrolysis is facilitated by the metal ion-DNAase. At relatively high Na+ concentrations, where the metal ion-DNA interaction is weak, DNA hydrolysis is also facilitated by the metal ion-DNAase. With NPPP as substrate the Michaelis constants are Km 3.7 mM for Mn2+ and Km 49 mM for Mg2+ in 0.2 M-Tris/HCl buffer, pH 7.2. Ca2+ competes with Mn2+, with Ki 64 mM. Free Cu2+ ions non-competitively inhibit DNAase-catalysed DNA or NPPP hydrolysis in the presence of Mn2+ or Mg2+ and the inhibition is not relieved by Ca2+. The affinity of Cu2+ for free DNAase is higher than that for Mn2+-DNAase. Mn2+ is not bound to DNAase via a simple ionic interaction, as Mn2+ remains bound in the presence of relatively high Na+ concentrations and induces a near-u.v. difference absorption spectrum. The kinetics of NPPP hydrolysis catalysed by Mn2+-DNAase are sigmoidal. From the Hill equation, h = 2.0 is obtained, suggesting that more than two NPPP molecules are bound per molecule of DNAase with a certain amount of co-operativity. Because DNAase in solution is a monomer with a single catalytic site, the multiple NPPP molecules on a single protein molecule are probably in one location, resulting in a co-operative interaction that may resemble that in the stacked base-pairs of double-helical DNA.  相似文献   

16.
L M Abell  J J Villafranca 《Biochemistry》1991,30(25):6135-6141
A number of slow tight-binding inhibitors are known for glutamine synthetase that resemble the geometry of the tetrahedral intermediate formed during the enzyme-catalyzed condensation of gamma-glutamyl phosphate and ammonia. One of these inhibitors, phosphinothricin [L-2-amino-4-(hydroxymethyl-phosphinyl)butanoic acid], has been investigated by rapid kinetic methods. Phosphinothricin not only exhibits the kinetic properties of a slow tight-binding inhibitor but also undergoes phosphorylation during the course of the ATP-dependent inactivation. The acid lability of phosphinothricin phosphate enabled investigation of the kinetics of glutamine synthetase inactivation using rapid quench kinetic techniques. The rate-limiting step in the inhibition reaction is the binding of inhibitor (0.004-0.014 microM-1 s-1) and/or a conformational change associated with binding, which is several orders of magnitude slower than the binding of ATP. The association rate of phosphinothricin depends on which metal ion is bound to the enzyme (Mn2+ or Mg2+). With Mn2+ bound to glutamine synthetase the rate of association and the phosphorylation rate are faster than when Mg2+ is bound. The data are interpreted with use of a model in which the binding of a substrate analogue with a tetrahedral moiety enhances the phosphorylation rate of the reaction intermediate; however, the initial binding interaction is retarded because the enzyme has to bind a molecule that has a "transition-state" geometry rather than a ground-state substrate structure. During the course of the inactivation, progressively slower rates for binding and phosphoryl transfer were observed, indicating communication between active sites.  相似文献   

17.
A comparative study of the Cu2+ effects, binding and reduction, has been performed on rat liver mitochondria. In the first minutes, Cu2+ (less than or equal to 50 micron) is massively bound and reduced to the extent of 70%-80% while a simultaneous activation of respiration takes place. Then the remaining 20% or so of Cu2+ are progressively bound and reduced while respiratory inhibition, Ca2+ and Mg2+ effluxes, and swelling are observed. EDTA, used as a copper chelator, prevents or reduces the copper effects and removes part of the bound copper, according to the time of introduction in the incubation medium after Cu2+. The results suggest that the two steps of the copper binding and the effects following involve mainly first the outer (cytosol side) proteins of the inner membrane and then those of the inner membrane. 100 microM dithiothreitol and 100 microM glutathione used as antioxidant thiol reagents prevent, as does EDTA, but do not reverse the 25 microM copper effects. They also decrease the copper binding; however, no relationship between binding and preventive action is observed. It is shown that glutathione and dithiothreitol have a specific potent ability to reduce Cu2+, which explains that in presence of these reagents copper may react with mitochondria partly or entirely in the form of Cu+. These findings suggest that Cu2+ in its Cu+ form has no mitochondrial effect. A mechanism of copper action involving oxidation of some membrane thiol groups is discussed.  相似文献   

18.
Yeast inorganic pyrophosphatase was found to bind two Mn2+ per subunit in the absence of phosphate and three Mn2+ per subunit in the presence of phosphate. Kinetic studies of the pyrophosphatase-catalyzed hydrolysis of Cr(NH3)4PP and Cr(H2O)4PP were carried out with Mn2+ and with Mg2+ as activators. The results from these studies suggest that three divalent cations per pyrophosphatase active site are required for catalysis. NMR and EPR studies were conducted to evaluate the relative location of the metal ion binding sites on the enzyme. The two Mn2+ ions bound to the free enzyme are in close enough proximity to magnetically interact. Analysis of the NMR and EPR data in terms of a dipolar relaxation mechanism between Mn2+ ions provides an estimate of the distance between them of 10-14 A. When the diamagnetic substrate analog [Co(NH3)4PNP]- or intermediate analog [Co(NH3)4 (P)2]- are bound to pyrophosphatase, two Mn2+ ions still bind to the enzyme and their magnetic interaction increases. In the presence of these Co3+ complexes, the Mn2+--Mn2+ separation decreases to 7-9 A. Several NMR and EPR experiments were conducted at low Mn2+ to pyrophosphatase ratios (approximately 0.3), where only one Mn2+ ion binds per subunit, in the presence of Cr3+ or Co3+ complexes of PNP or PP. Analysis of the Mn2+--Cr3+ dipolar relaxation evident in proton NMR and EPR data provided for the calculation of Mn2+--Cr3+ distances. When the substrate analog CrPNP was present, the Mn2+--Cr3+ distance was congruent to 7 A whereas, when Cr(P)2 was bound to pyrophosphatase, the Mn2+--Cr3+ distance was congruent to 5 A. These results strongly support a model for the catalytic site of pyrophosphatase that involves three metal ion cofactors.  相似文献   

19.
Measurements of binding of certain divalent cations to yeast apoenolase were made using a pH-meter, chromatography, a divalent cation electrode, and ultrafiltration. The binding of the activating metal ions Mg2+ and Co2+ and the nonactivator Ca2+ were studied as functions of the presence or absence of substrate/product, phosphate, and fluoride or level of Tb3+. The data suggest phosphate and fluoride increase Mg2+ binding but not Ca2+ binding. Substrate/product appears to increase Ca2+ binding as well as that of Mg2+ and Co2+. In the presence of substrate, Co2+ binding was 5-6 mol/mol dimer. In the absence of substrate/product, Tb3+ reduced Co2+ binding from 4 mol/mol to 2. These data are interpreted in terms of binding to "conformational," "catalytic" (substrate/product dependent), and "inhibitory" sites. Measurements of Tb3+ fluorescence quenching by Co2+ suggested that the distance between "conformational" sites on the two subunits was large, while the distance between "conformational" and "inhibitory" sites was ca. 17 +/- 4 A. Potentiometric titrations of apoenzyme with Ca2+ and Mg2+ showed that the metal ions produced the same proton release in the presence or absence of substrate/product. If phosphate and fluoride were present, then more protons were released if Ca2+ was the titrant rather than Mg2+, suggesting a difference in ionization state in the complex with the activating metal. Electron paramagnetic resonance studies of Co2+ binding to the various sites in the enzyme are presented. The Co2+ bound to all three sites appears to be high spin, consistent with a preponderance of oxyligands in an octahedral environment. Substrate, citrate, and a strongly binding substrate analogue strongly enhance the hyperfine structure of conformational Co2+. This is interpreted as the result of a change in interaction of an axial ligand to conformational Co2+ produced by carbon-3 of substrate or analogue.  相似文献   

20.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号