共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The minimal structural unit of cytochrome c oxidase purified from Thiobacillus novellus was composed of one molecule each of two subunits with molecular masses of 32 and 23 kDa, respectively, and the unit had one molecule of heme a and one atom of copper. In the presence of n-octyl-beta-D-thioglucoside, the oxidase existed as the monomeric form of the unit, while it occurred as the dimeric form of the unit in the presence of Tween 20. The monomeric form showed an active cytochrome c oxidizing activity and reduced molecular oxygen to water with ferrocytochrome c. Namely, it has been shown that the bacterial cytochrome c oxidase with one heme a molecule and one copper atom per molecule can catalyze oxidation of ferrocytochrome c with concomitant reduction of molecular oxygen to water. 相似文献
3.
Thiobacillus ferrooxidans cytochrome c oxidase: purification, and molecular and enzymatic features. 总被引:2,自引:0,他引:2
Cytochrome c oxidase from Thiobacillus ferrooxidans was purified to homogeneity and some of its properties were studied. The oxidase was solubilized with n-octyl-beta-D-thioglucoside (OTG) under acidic conditions (pH 4.0) and purified by one step of ion-exchange chromatography with a CM-Toyopearl column. The absorption spectrum of the oxidase showed peaks at 420 and 595 nm in the oxidized form and at 440 and 595 nm in the reduced form. Its CO compound showed a novel absorption spectrum; a double-peaked gamma band appeared at 429 and 438 nm. The oxidase seemed to have CuA-like copper atom from its ESR and near-infrared spectra. The oxidase molecule consisted of three polypeptides with molecular weights of 53,000, 22,000, and 17,000, respectively, as estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The molecular weight of the enzyme in a solution containing detergents was estimated to be 169,000 on the basis of the results obtained by gel filtration, while the molecular weight per heme alpha was estimated to be 83,700. The copper content of the oxidase was 1.01 g atom per mol of heme alpha. Therefore, the cytochrome seemed to contain one molecule of heme alpha and one atom of copper in the minimal structural unit consisting of one molecule each of the three subunits, and to occur as a dimer of the unit in the solution. The oxidase oxidized ferrocytochrome c-552 of the bacterium, and the optimal pH of the reaction was 3.5.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Second derivative absorption spectroscopy has been used to assess the effects of complex formation between cytochrome c and cytochrome c oxidase on the conformation of the cytochrome a cofactor. When ferrocytochrome c is complexed to the cyanide-inhibited reduced or mixed valence enzyme, the conformation of ferrocytochrome a is affected. The second derivative spectrum of these enzyme forms displays two electronic transitions at 443 and 451 nm before complex formation, but only the 443-nm transition after cytochrome c is bound. This effect is not induced by poly-L-lysine, a homopolypeptide which is known to bind to the cytochrome c binding domain of cytochrome c oxidase. The effect is limited to cyanide-inhibited forms of the enzyme; no effect was observed for the fully reduced unliganded or fully reduced carbon monoxide-inhibited enzyme. The spectral signatures of these changes and the fact that they are exclusively associated with the cyanide-inhibited enzyme are both reminiscent of the effects of low pH on the conformation of cytochrome a (Ishibe, N., Lynch, S., and Copeland, R. A. (1991) J. Biol. Chem. 266, 23916-23920). These results are discussed in terms of possible mechanisms of communication between the cytochrome c binding site, cytochrome a, and the oxygen binding site within the cytochrome c oxidase molecule. 相似文献
5.
Cytochrome c oxidase is the terminal complex of the respiratory chain in mitochondria and some aerobic bacteria and is responsible for most of the O(2) consumption in biology. The key reaction in the catalysis of O(2) reduction is O-O bond scission that requires four electrons and a proton. In our recent work (Gorbikova, E. A., Belevich, I., Wikstrom, M., and Verkhovsky, M. I. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 10733-10737), it was shown that the cross-linked Tyr-280 (Paracoccus denitrificans numbering) provides the proton for O-O bond cleavage. The deprotonated Tyr-280 must be reprotonated later on in the catalytic cycle to serve as a proton donor for the next oxygen reduction event. To find the reaction step at which the cross-linked Tyr-280 becomes reprotonated, all further steps of the catalytic cycle after O-O bond cleavage were followed by infrared spectroscopy. We found that complete reprotonation of the tyrosine is linked to the formation of the one-electron reduced state coupled to reduction of the Cu(B) site. 相似文献
6.
7.
C H Seiter R Margalit R A Perreault 《Biochemical and biophysical research communications》1979,86(3):473-477
Cytochrome was chemically coupled to cytochrome oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome reaction with oxidase, binds to the same oxidase subunit as does cytochrome , subunit IV in the gel system used. 相似文献
8.
ATP induces conformational changes in mitochondrial cytochrome c oxidase. Effect on the cytochrome c binding site 总被引:2,自引:0,他引:2
ATP influences the kinetics of electron transfer from cytochrome c to mitochondrial oxidase both in the membrane-embedded and detergent-solubilized forms of the enzyme. The most relevant effect is on the so-called "high affinity" binding site for cytochrome c which can be converted to "low affinity" by millimolar concentrations of ATP (Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1976) J. Biol. Chem. 251, 1104-1115). This phenomenon is characterized at the molecular level by the following features. ATP triggers a conformational change on the water-exposed surface of cytochrome c oxidase; in this process, carboxyl groups forming the cluster of negative charges responsible for binding cytochrome c change their accessibility to water-soluble protein modifier reagents; as a consequence the electrostatic field that controls the enzyme-substrate interaction is altered and cytochrome c appears to bind differently to oxidase; photolabeling experiments with the enzyme from bovine heart and other eukaryotic sources show that ATP cross-links specifically to the cytoplasmic subunits IV and VIII. Taken together, these data indicate that ATP can, at physiological concentration, bind to cytochrome c oxidase and induce an allosteric conformational change, thus affecting the interaction of the enzyme with cytochrome c. These findings raise the possibility that the oxidase activity may be influenced by the cell environment via cytoplasmic subunit-mediated interactions. 相似文献
9.
Jack A Kornblatt Bruce C Hill Michael C Marden 《European journal of biochemistry》2003,270(2):253-260
The influence of temperature on cytochrome c oxidase (CCO) catalytic activity was studied in the temperature range 240-308 K. Temperatures below 273 K required the inclusion of the osmolyte ethylene glycol. For steady-state activity between 278 and 308 K the activation energy was 12 kcal x mol-1; the molecular activity or turnover number was 12 s-1 at 280 K in the absence of ethylene glycol. CCO activity was studied between 240 and 277 K in the presence of ethylene glycol. The activation energy was 30 kcal x mol-1; the molecular activity was 1 s-1 at 280 K. Ethylene glycol inhibits CCO by lowering the activity of water. The rate limitation in electron transfer (ET) was not associated with ET into the CCO as cytochrome a was predominantly reduced in the aerobic steady state. The activity of CCO in flash-induced oxidation experiments was studied in the low temperature range in the presence of ethylene glycol. Flash photolysis of the reduced CO complex in the presence of oxygen resulted in three discernable processes. At 273 K the rate constants were 1500 s-1, 150 s-1 and 30 s-1 and these dropped to 220 s-1, 27 s-1 and 3 s-1 at 240 K. The activation energies were 5 kcal.mol-1, 7 kcal.mol-1, and 8 kcal.mol-1, respectively. The fastest rate we ascribe to the oxidation of cytochrome a3, the intermediate rate to cytochrome a oxidation and the slowest rate to the re-reduction of cytochrome a followed by its oxidation. There are two comparisons that are important: (a). with vs. without ethylene glycol and (b). steady state vs. flash-induced oxidation. When one makes these two comparisons it is clear that the CCO only senses the presence of osmolyte during the reductive portion of the catalytic cycle. In the present work that would mean after a flash-induced oxidation and the start of the next reduction/oxidation cycle. 相似文献
10.
Kappler U Bennett B Rethmeier J Schwarz G Deutzmann R McEwan AG Dahl C 《The Journal of biological chemistry》2000,275(18):13202-13212
Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC ). Here we show that the enzyme from Thiobacillus novellus is a periplasmically located alphabeta heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa mono-heme cytochrome c(552) subunit (midpoint redox potential, E(m8.0) = +280 mV). The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K(m) values for sulfite and cytochrome c(550) were determined to be 27 and 4 micrometer, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorAB genes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream of sorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any known c-type cytochromes. 相似文献
11.
12.
Protonation changes accompanying conversion of oxidised (O state) cytochrome c oxidase to the 2-electron-reduced P state, and 3-electron-reduced F state at pH 8.0 have been measured. It was found that 2 and 3 protons, respectively, were taken up. The fourth proton required for the reduction of O2 to H2O must therefore be consumed in the remaining F----O portion of the catalytic cycle. 相似文献
13.
14.
15.
Cytochrome a-type terminal oxidases derived from Thiobacillus novellus and Nitrobacter agilis have been purified to a homogeneous state as judged from their electrophoretic behavior and their subunit structures studied by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The T. novellus enzyme is composed of two kinds of subunits of 32,000 and 23,000 daltons and its minimum molecular weight is 55,000 on the basis of heme content and amino acid composition. The N. agilis enzyme also has two kinds of subunits of 40,000 and 27,000 daltons and its minimum molecular weight is 66,000 on the basis of heme content and amino acid composition. Therefore, the molecule of each enzyme is composed of two kinds of subunits which resemble the subunits of the eukaryotic cytochrome oxidase biosynthesized in the mitochondrion at least with respect to molecular weight. 相似文献
16.
Chemical modification of the CuA site affects the proton pumping activity of cytochrome c oxidase 总被引:1,自引:0,他引:1
Cytochrome c oxidase in which the CuA site has been perturbed by extensive modification of the enzyme with the thiol reagent p-(hydroxymercuri)benzoate has been reconstituted into phospholipid vesicles. The reconstituted vesicles lack respiratory control, and the orientation of the enzyme in the vesicles is similar to that of the native cytochrome c oxidase. In the proton translocation assay, the vesicles containing the modified enzyme behave as if they are unusually permeable to protons. When the modified and native proteins were coreconstituted, a substantial portion of the latter became uncoupled as revealed by low respiratory control and low overall proton pumping activity. These results suggest that the modified enzyme catalyzes a passive transport of protons across the membrane. When milder conditions were used for the chemical modification, a majority of the thiols reacted while the CuA site remained largely intact. Reconstitution of such a partially modified cytochrome c oxidase produced vesicles with respiratory control and proton translocating activity close to those of reconstituted native enzyme. It thus appears that the appearance of a proton leak is related to the perturbation of the CuA site. These observations suggest that the structure of CuA may be related to the role of this site in the proton pumping machinery of cytochrome c oxidase. 相似文献
17.
18.
19.
20.
Cytochrome c oxidase, the terminal enzyme in the electron transfer chain, catalyzes the reduction of oxygen to water in a multiple step process by utilizing four electrons from cytochrome c. To study the reaction mechanism, the resonance Raman spectra of the intermediate states were measured during single turnover of the enzyme after catalytic initiation by photolysis of CO from the fully reduced CO-bound enzyme. By measuring the change in intensity of lines associated with heme a, the electron transfer steps were determined and found to be biphasic with apparent rate constants of approximately 40 x 10(3) s(-1) and approximately 1 x 10(3) s(-1). The time dependence for the oxidation of heme a and for the measured formation and decay of the oxy, the ferryl ("F"), and the hydroxy intermediates could be simulated by a simple reaction scheme. In this scheme, the presence of the "peroxy" ("P") intermediate does not build up a sufficient population to be detected because its decay rate is too fast in buffered H(2)O at neutral pH. A comparison of the change in the spin equilibrium with the formation of the hydroxy intermediate demonstrates that this intermediate is high spin. We also confirm the presence of an oxygen isotope-sensitive line at 355 cm(-1), detectable in the spectrum from 130 to 980 micros, coincident with the presence of the F intermediate. 相似文献