首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Production of [14C]acetylcholine and 14CO2 was examined by using tissue prisms from neocortex, hippocampus, and striatum from rats aged approximately 5 months, 13 months, and 27 months. [14C]Acetylcholine synthesis in the striatum showed highly significant decreases with age for measurements in the presence of both 5 m m - and 31 m m -K+, contrasting with the lack of significant change in 14CO2 production in this region. The neocortex and hippocampus showed only small changes, especially when comparison was made between 13-month and senescent animals. Measurements of the release of [14C]acetylcholine and influence of atropine on this release confirmed the relative stability with age of the cholinergic system in the neocortex.  相似文献   

2.
Abstract: Metabolic compartmentation of amino acid metabolism in brain is exemplified by the differential synthesis of glutamate and glutamine from the identical precursor and by the localization of the enzyme glutamine synthetase in glial cells. In the current study, we determined if the oxidative metabolism of glutamate and glutamine was also compartmentalized. The relative oxidation rates of glutamate and glutamine in the hippocampus of free-moving rats was determined by using microdialysis both to infuse the radioactive substrate and to collect 14CO2 generated during their oxidation. At the end of the oxidation experiment, the radioactive substrate was replaced by artificial CSF, 2 min-fractions were collected, and the specific activities of glutamate and glutamine were determined. Extrapolation of the specific activity back to the time that artificial CSF replaced 14C-amino acids in the microdialysis probe yielded an approximation of the interstitial specific activity during the oxidation. The extrapolated interstitial specific activities for [14C]glutamate and [14C]glutamine were 59 ± 18 and 2.1 ± 0.5 dpm/pmol, respectively. The initial infused specific activities for [U-14C]glutamate and [U-14C]glutamine were 408 ± 8 and 387 ± 1 dpm/pmol, respectively. The dilution of glutamine was greater than that of glutamate, consistent with the difference in concentrations of these amino acids in the interstitial space. Based on the extrapolated interstitial specific activities, the rate of glutamine oxidation exceeds that of glutamate oxidation by a factor of 5.3. These data indicate compartmentation of either uptake and/or oxidative metabolism of these two amino acids. The presence of [14C]glutamine in the interstitial space when [14C]glutamate was perfused into the brain provided further evidence for the glutamate/glutamine cycle in brain.  相似文献   

3.
The rates of the phosphorylation and dephosphorylation of 2-deoxyglucose were measured in rat brain in vivo using tracer kinetic techniques. The rate constant for each reaction was estimated from two separate experiments with different protocols for tracer administration. Tracer amounts of [1-14C]2-deoxyglucose (1 microCi) were injected through the internal carotid artery (intraarterial experiment), or through the atrium (intravenous experiment). Brains were sampled by freeze-blowing at various times after the injection. In the intraarterial experiment, the rate constant for the forward reaction from 2-deoxyglucose to 2-deoxyglucose phosphate was calculated by dividing the initial rate of 2-deoxyglucose phosphate production by the 2-deoxyglucose content in brain. The rate constant for the reverse reaction from 2-deoxyglucose phosphate to 2-deoxyglucose was calculated from the decay constant of 2-deoxyglucose phosphate. The rate constants estimated were 10.1 +/- 1.4%/min (SD) and 3.00 +/- 0.01%/min (SD), respectively, for the forward and reverse reactions. In the intravenous experiment, rate constants for both reactions were estimated by compartmental analysis. By fitting data to program SAAM-27, the rate constants for the forward and reverse reactions were estimated as 11.4 +/- 0.4%/min (SD) and 5.1 +/- 0.4%/min (SD), respectively. The rate constants determined were compared to those for the reactions between glucose and glucose-6-phosphate, estimated previously from labeled glucoses. It is concluded that the rate of glucose utilization measured by the 2-deoxyglucose method reflects the rate of the hexokinase reaction and not the rate of glucose utilization or brain energy utilization.  相似文献   

4.
[8-14C]Benzyladenine (BA) and [8-14C] trans-zeatin (tZ) were fed through the petiole to mature, detached green, yellow and variegated leaves of Schefflera arboricola. Recovery of radioactivity from the plant material ranged between 4.2 and 22.1%. More radioactivity was recovered when tZ was applied compared to BA. Green leaves or the green parts of variegated leaves yielded more radioactivity than the yellow leaf material. BA was metabolized much faster than the endogenous cytokinin tZ. It would appear that while lower amounts of radioactivity were present in yellow leaves, as well as in yellow parts of variegated leaves, the rate of cytokinin metabolism was nevertheless faster. Metabolites that were formed to a greater extent in these yellow parts were the nucleotides of both cytokinins. Currently it is not known whether or not cytokinins influence chlorophyll and other pigment development in chimeric variegated leaves.  相似文献   

5.
Abstract: The production of 14CO2 and [14C]acetylcholine from [U-14C]glucose was determined in vitro using tissue prisms prepared from the dorsolateral striatum (a region developing extensive neuronal loss following ischemia) and the paramedian neocortex (an ischemia-resistant region) following 30 min of forebrain ischemia and recirculation up to 24 h. Measurements were determined under basal conditions (5 mMK+) and following K+ depolarization (31 mM K+). The production of 14CO2 by the dorsolateral striatum was significantly reduced following 30 min of ischemia for measurements in either 5 or 31 mM K+ but recovered toward preischemic control values during the first hour of recirculation. Further recirculation resulted in 14CO2 production again being reduced relative to control values but with larger differences (20–27% reductions) detectable under depolarized conditions at recirculation times up to 6 h. Samples from the paramedian neocortex showed no significant changes from control values at all time points examined. [14C]Acetylcholine synthesis, a marker of cholinergic terminals that is sensitive to changes in glucose metabolism in these structures, was again significantly reduced only in the dorsolateral striatum. However, even in this tissue, only small (nonstatistically significant) differences were seen during the first 6 h of recirculation, a finding suggesting that changes in glucose oxidation during this period were not uniform within all tissue components. The results of this study provide evidence that in a region susceptible to ischemic damage there were specific changes during early recirculation in the metabolic response to depolarization. This apparent inability to respond appropriately to an increased need for energy production could contribute to the further deterioration of cell function in vivo and ultimately to the death of some cells.  相似文献   

6.
The [14C]deoxyglucose [Sokoloff et al., J. Neurochem. 28, 897-916 (1977)] and [6-14C]glucose [Hawkins et al., Am. J. Physiol. 248, C170-C176 (1985)] quantitative autoradiographic methods were used to measure regional brain glucose utilization in awake rats. The spatial resolution and qualitative appearance of the autoradiograms were similar. In resting animals, there was no significant difference between the two methods among 18 gray and three white matter structures over a fourfold range in glucose utilization rates (coefficient of correlation = 0.97). In rats given increasing frequencies of photoflash visual stimulation, the two methods gave different results for glucose utilization within visual pathways. The linearity of the metabolic response was studied in the superior colliculus using an on-off checkerboard stimulus between 0 and 33 Hz. The greatest increment in activity occurred between 0 and 4 Hz stimulation with both methods, probably representing recruitment of neuronal elements into activity. Above 4 Hz, there was a progressive increase in labeling with [14C]deoxyglucose up to 1.7 times control at 33 Hz. With [6-14C]-glucose, there was no further increment in change above a 30% increase seen at 4 Hz. Measurement of tissue glucose revealed no drop in the visually stimulated structures compared to control. We interpret these results to indicate that, with increasing rates of physiological activity, the products of deoxyglucose metabolism accumulate progressively, but the products of glucose metabolism are removed from brain in 10 min.  相似文献   

7.
The fate of carbamoyl phosphate in white spruce seedlings revolves around the production of spontaneous degradation products, cyanate, bicarbonate, and carba-mate. When [14C]-carbamoyl phosphate and [14C]-cyanate are assimilated, urea is a common early metabolic intermediate that appears in the alcohol soluble N. By contrast, urea is not detected among the products of [14C]-bicarbonate. Carbamoyl phosphate and glutamic acid are implicated as having pivotal roles in the production of amides, arginine, and biotin. Within 2-h exposures to radioactive substrates considerably more carbon from bicarbonate was diverted into amino acids Incorporated into proteins than with carbon-nitrogen substrates. Specific activities of bound amino acid residues support the view that proteins formed from these [14C]-substrates have different rates of metabolic turnover.  相似文献   

8.
9.
The metabolism of ['4C]-labelled glucose and acetate has been investigated during the early germination - before radicle emergence - of lettuce ( Lactuca sativa L., cv. Val d'Orge) embryos. Similar amounts of radioactivity from both substrates were evolved as C., or incorporated into organic acids, amino acids and proteins. A large part of the [14C]-glucose was also incorporated into sucrose and polysaecharides, and a small part into the glycerol moiety of lipids. Acetate was massively incorporated into lipids, and only slightly into neutral compounds. These results show that both glucose and acetate can be utilized as respiratory substrates during early germination of lettuce embryos. Various biosynthetic pathways leading to amino acids, proteins, polysaecharides and lipids are active during this period.  相似文献   

10.
Awake, unrestrained, and behaviourally normal animals with superfusion cannulae implanted over the sensorimotor cortex were used in a study of the capacity of infused [U-14C]glutamine for labelling glutamate and other amino acids released by depolarising stimuli. A spontaneous background release of [14C]glutamate was detected. This was increased by tityustoxin (1 microM). The specific radioactivity of glutamate increased eightfold during the evoked-release period. [14C]Aspartate was also detected and showed increased release, but not increased specific labelling, in response to depolarisation. Evoked gamma-aminobutyric acid (GABA) release occurred but only small amounts of [14C]GABA were detected. Glutamine showed increased rates of uptake to the sensorimotor cortex during stimulation periods, suggesting an accelerated breakdown via glutaminase.  相似文献   

11.
The effects of drought stress and season on both allocation of photosynthates to stems and leaves and potential for stem rubber synthesis were studied in guayule ( Parthenium argentatum Gray USDA line 11604). Two-year-old plants grown under field conditions in the Negev desert of Israel were subjected to different irrigation regimes, and water status was assessed by measuring the relative water content (RWC). Undetached plant tips were exposed to a 1 h pulse of 14CO2, followed by a 24 h chase. 14C fixed and translocated to different plants parts and notably 14C incorporation into rubber and resin fractions was determined. The potential of detached branch slices to incorporate [14C]-acetate into rubber was also studied. A higher percentage of fixed 14C was translocated from shoot tips in winter (28–30%) than in summer (15–18%). The percentage of [14C]-acctate incorporated into the rubber fraction by stem slices was maximal in winter (20%) and minimal in summer (3–5%) in both cases in the absence of drought stress. In summer the translocation of photosynthates into stems was inversely related to plant RWC, dropping from 18% three days after irrigation to 3% 14 days later, and the potential of stems to synthesise rubber was high under drought conditions and low in well irrigated plants.  相似文献   

12.
Fluorine-18-labeled ortho or para isomers of L-fluorophenylalanine were used in double-label experiments together with L-[3H]phenylalanine for amino acid incorporation into cerebral proteins of Mongolian gerbil brain. It was demonstrated by qualitative regional comparison of the 18F and 3H autoradiographic images that L-p-[18F]fluorophenylalanine is incorporated into proteins and exhibits a regional cerebral protein synthesis pattern. To a minor extent, L-p-fluorophenyl[3-14C]alanine and L-o-[18F]fluorophenylalanine are hydroxylated in vivo to form labeled tyrosine or tyrosine analogues that are incorporated into cerebral proteins as well. The advantage and validity of the application of L-p-[18F]fluorophenylalanine with positron emission tomography for noninvasive studies of cerebral protein synthesis in humans are evaluated on the basis of an experimental animal approach.  相似文献   

13.
14.
Metabolism of indole-3-acetic acid in soybean [ Glycine max (L.) Merr.] was investigated with [1-14C]- and [2-14C]-indole-3-acetic acid (IAA) applied by injection into soybean hypocotyl sections and by incubation with soybean callus. Free IAA and its metabolites were extracted with 80% methanol and separated by high performance liquid chromatography with [3H]-IAA as an internal standard. Metabolism of IAA in soybean callus was much greater than that in tobacco ( Nicotiana tabacum L.) callus used for comparison. High performance liquid chromatography of soybean extracts showed at least 10 metabolite peaks including both decarboxylated and undecarboxylated products. A major unstable decarboxylated metabolite was purified. [14C]-indole-3-methanol (IM) was three times more efficient than [2-14C]-IAA as substrate for producing this metabolite. It was hydrolyzable by β-glucosidase (EC 3.2.1.21), yielding an indole and D-glucose. The indole possessed characteristics of authentic IM. Thus, the metabolite is tentatively identified as indole-3-methanol-β-D-glucopyranoside. The results suggest that soybean tissues are capable of oxidizing IAA via the decarboxylative pathway with indole-3-methanol-glucoside as a major product. The high rate of metabolism of IAA may be related to the observed growth of soybean callus with high concentrations of IAA in the culture medium.  相似文献   

15.
Axial and radial transport and the accumulation of photoassimilates in carrot taproot were studied using 14C labelling and autoradiography. Axial transport of the 14C labelled assimilates inside the taproot was rapid and occurred mainly in the young phloem found in rows radiating from the cambium. The radial transport of the assimilate inward (to cambium, xylem zone and pith) and outward (to phloem zone and periderm) from the conducting phloem was an order of magnitude slower than the longitudinal transport and was probably mainly diffusive. The cambial zone of the taproot presented a partial barrier in the inward path of the assimilate to the xylem zone. We suggest that this is due to the cambium comprising a strong sink for the assimilate on the basis that our previous work has shown that it contains very low concentrations of free sucrose. By contrast, a high accumulation of nonsoluble 14C was found in the cambium region in good agreement with the active growth of this zone. Autoradiography following the feeding of 14C labelled sugars to excised sections of taproot indicated that only a ring of cells at and/or just within the cambium take up sugars from the apoplast. This indicates that radial movement in the phloem and pith must be symplastic. An apoplastic step between phloem and xylem is possible. The rapid uptake of sugars from the apoplast at this point might represent a mechanism for keeping photoassimilates away from the transpiration stream and re-location back to the leaves.  相似文献   

16.
The metabolism of [14C]-thidiazuron (N-phenyl-N'-l,2,3-tbiadiazol-5-ylurea), a compound with extremely high cytokinin activity, was examined in callus cultures of Phaseolus lunatus L. cv . Kingston. No appreciable metabolism of the compound was detected in short-term studies (up to 48 h). When tissues were grown on medium containing [14C]-thidiazuron for longer periods (12 to 33 days), several major metabolites were isolated. The array of radioactive metabolites was the same using [14C]-thidiazuron with the label in the phenyl ring, the urea bridge or the thiadiazol ring, indicating no degradation of the thidiazuron molecule. Enzyme digestion followed by HPLC and TLC analyses was used to identify major metabolites. α-Gtacosidase degraded two of the metabolites to thidiazuron and a third was converted to N-p-hydroxyphenyl-N2-l,2,3-thiadiazol-5-ylurea. Limited tests of the O-glycosyl derivatives for cytokinin activity indicated that they are much less active than the parent compound. Bioassays involving hydroxylated derivatives of thidiazuron indicated that the p-hydroxyphenyl derivative was 10000 limes less active than the parent compound, and the oetho - and mete -derivatives had 1000 and 100 times lower activity, respectively, than thidiazuron. These results suggest that thidiazuron itself is the active compound and that metabolism of thidiazuron in Phaseolus tissues only involves modification of the intact structure, yielding metabolites that are less cytokinin-active.  相似文献   

17.
18.
19.
Oligodendrocytes were isolated from the white matter of ox brains. Light microscopy revealed that the cells were greater than or equal to 90% phase-bright with a mean diameter of 7.6 micron. Transmission electron microscopy was employed to identify the classic morphology associated with mature oligodendrocytes. Homogenates of the isolated cells showed negligible activity of neuronal and astrocytic cell markers. Using a suspension culture method cells were incubated with [14C]glucose. This simple precursor labelled the five complex lipids choline glycerophospholipid, ethanolamine glycerophospholipid, inositol glycerophospholipid + serine glycerophospholipid, and the two cerebroside species. The incorporation of label was shown to be dependent on glucose concentration, protein concentration, and the length of incubation. In addition the glucose uptake blocker phloretin (1 mM) reduced the degree of labelling by up to 97%, and the metabolic poisons KCN (1 mM) and iodoacetate (0.5 mM) had varying deleterious effects on the amounts of labelling of the five lipids measured.  相似文献   

20.
The role of methionine as a precursor in mugineic acid (MA) biosynthesis was studied by feeding 15N-ammonium sulfate, 14C-amino acids, and [1-14C, 15N]-methionine to iron-deficient barley roots ( Hordeum vulgare L. cv. Minorimugi), grown hydroponically. The incorporation of isotopes into amino acids was also examined. Methionine appears to be the most efficient precursor of the mugineic acid family (MAs) of phytosiderophores; homoserine was also incorporated into the MAs, but other amino acids such as glutamate, alanine, and γ-amino butyric acid did not act as precursors of MAs. Carbon-14 and 15N of methionine were incorporated into MAs. This specific incorporation of 14C and 15N indicated that the nitrogen atoms of MAs were derived from two molecules of methionine. It is suggested that deoxymugineic acid (DMA) is probably the first phytosiderophore to be synthesized on the biosynthetic pathway of MAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号