首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng H  Di L  Fu G  Chen Y  Gao X  Xu L  Lin X  Wen R 《Molecular and cellular biology》2007,27(14):5235-5245
Bcl10 (B-cell lymphoma 10) is an adaptor protein comprised of an N-terminal caspase recruitment domain and a C-terminal serine/threonine-rich domain. Bcl10 plays a critical role in antigen receptor-mediated NF-kappaB activation and lymphocyte development and functions. Our current study has discovered that T-cell activation induced monophosphorylation and biphosphorylation of Bcl10 and has identified S138 within Bcl10 as one of the T-cell receptor-induced phosphorylation sites. Alteration of S138 to an alanine residue impaired T-cell activation-induced ubiquitination and subsequent degradation of Bcl10, ultimately resulting in prolongation of TCR-mediated NF-kappaB activation and enhancement of interleukin-2 production. Taken together, our findings demonstrate that phosphorylation of Bcl10 at S138 down-regulates Bcl10 protein levels and thus negatively regulates T-cell receptor-mediated NF-kappaB activation.  相似文献   

2.
Transforming growth factor beta (TGF beta) is a family of polypeptides that modulate growth and differentiation. TGF beta exerts its effects on target cells through interaction with specific cell surface receptors, but the signal transduction pathways are as yet largely unresolved. In this study we report that the growth inhibitory action of TGF beta on mink lung CCl 64 cells is associated with a rapid and transient phosphorylation of a number of nuclear proteins. In parallel, a transient expression of the immediate early gene jun B is observed. The expression of jun B can be inhibited by the protein kinase inhibitor H7 and can be augmented by the phosphatase inhibitor okadaic acid. Thus, protein phosphorylation can be a possible mechanism through which TGF beta 1 initiates early genomic responses.  相似文献   

3.
1. Tubulin is not an adenosine-3':5'-monophosphate-dependent (cyclic-AMP-dependent) protein kinase. Both entities have been clearly separated by sucrose gradient ultracentrifugation. With a tubulin preparation obtained by the polymerization-depolymerization technique protein kinase had a sedimentation coefficient of 8.7 S whereas tubulin sedimented with 6.4 S. After preincubation with both cyclic AMP and histone the kinase dissociated into its catalytic subunit with a sedimentation coefficient of 3.4 S. 2. Tubulin prepared by the polymerization-depolymerization technique was neither phosphorylated in vivo nor in vitro. On the contrary if this preparation was further purified by the Weisenberg's procedure (DEAE-Sephadex batch absorption) before incubation with [gamma-32 P]ATP, phosphorylation occurred. Thus, phosphorylation depended on the method used to purify tubulin i.e. was likely to an an artefact.  相似文献   

4.
Liver preparations from turpentine-treated rats show an increased capacity to autophosphorylate a protein of 32.5 kDa (p 32.5): both the kinase and the substrate protein are strongly bound to the membrane fraction, but the protein is released to the cytosol after phosphorylation, which occurs exclusively in serine residues. No known second messenger-dependent protein kinase seems to be responsible for the reaction. Phosphorylation of p 32.5 could be an early post-receptorial event after turpentine-treatment possibly caused by cytokines and involved in the pathogenesis of further events of the acute-phase response.  相似文献   

5.
The nitration of protein tyrosine residues by peroxynitrous acid has been associated with pathological conditions. Here it is shown, using a sensitive competitive enzyme-linked immunosorbent assay and immunoblotting for nitrotyrosine, that spontaneous nitration of specific proteins occurs during a physiological process, the activation of platelets by collagen. One of the main proteins nitrated is vasodilator-stimulated phosphoprotein. Endogenous synthesis of nitric oxide and activity of cyclo-oxygenase were required for the nitration of tyrosine. The nitration was mimicked by addition of peroxynitrite to unstimulated platelets, although the level of nitrotyrosine formation was greater and its distribution among the proteins was less specific.  相似文献   

6.
7.
The endogenous phosphorylation of human erythrocyte cytosolic proteins is markedly increased when the crude cytosol, prior to incubation in the presence of [y-32P] ATP, is submitted to DEAE-cellulose chromatography. Some proteins, including 22 and 23 kDa proteins, are preferentially phosphorylated by cytosolic casein kinase CS, whereas other proteins, including 42 kDa protein, are preferentially phosphorylated by casein kinase CTS. The CS-catalyzed phosphorylation is strongly inhibited by physiological ionic strength (150 mM KCl or NaCl) and by physiological levels (3 mM) of 2,3-bisphosphoglycerate, while CTS-catalyzed phosphorylation is unaffected. The very poor endogenous phosphorylation of these proteins in the crude cytosol may be due to the presence of other cytosolic inhibitors which are removed by DEAE-cellulose chromatography.  相似文献   

8.
Adaptor proteins, molecules that mediate intermolecular interactions, are now known to be as crucial for lymphocyte activation as are receptors and effectors. Extensive work from numerous laboratories has identified and characterized many of these adaptors, demonstrating their roles as both positive and negative regulators. Studies into the molecular basis for the actions of these molecules shows that they function in various ways, including: recruitment of positive or negative regulators into signalling networks, modulation of effector function by allosteric regulation of enzymatic activity, and by targeting other proteins for degradation. This review will focus on a number of adaptors that are important for lymphocyte function and emphasize the various ways in which these proteins carry out their essential roles.  相似文献   

9.
Modification of yeast ribosomal proteins. Phosphorylation.   总被引:2,自引:0,他引:2       下载免费PDF全文
Two-dimensional polyacrylamide-gel electrophoretic analysis of yeast ribosomal proteins labelled in vivo with 32PO43- revealed that the proteins S2 and S10 of the 40S ribosomal subunit, and the proteins L9, L30, L44 and L45 of the 60S ribosomal subunit, are phosphorylated in vivo. Most of the phosphate groups appeared to be linked to serine residues. Teh number of phosphate groups per molecule of phosphorylated protein species ranged from 0.01 to 0.79. Since most of the phosphorylated ribosomal proteins appear to associate with the pre-ribosomal particles at a very late stage of ribosome assembly, phosphorylation is more likely to play a role in the functioning of the ribosome than in its assembly.  相似文献   

10.
Phosphorylation of proteins in Clostridium thermohydrosulfuricum.   总被引:1,自引:3,他引:1       下载免费PDF全文
Cell extracts of the thermophile Clostridium thermohydrosulfuricum catalyzed the phosphorylation by [gamma-32P]ATP of several endogenous proteins with Mrs between 13,000 and 100,000. Serine and tyrosine were the main acceptors. Distinct substrate proteins were found in the soluble (e.g., proteins p66, p63, and p53 of Mrs 66,000, 63,000, and 53,000, respectively) and particulate (p76 and p30) fractions, both of which contained protein kinase and phosphatase activity. The soluble fraction suppressed the phosphorylation of particulate proteins and contained a protein kinase inhibitor. Phosphorylation of p53 was promoted by 10 microM fructose 1,6-bisphosphate or glucose 1,6-bisphosphate and suppressed by hexose monophosphates, whereas p30 and p13 were suppressed by 5 microM brain (but not spinach) calmodulin. Polyamines, including the "odd" polyamines characteristic of thermophiles, modulated the labeling of most of the phosphoproteins. Apart from p66, all the proteins labeled in vitro were also rapidly labeled in intact cells by 32Pi. Several proteins strongly labeled in vivo were labeled slowly or not at all in vitro.  相似文献   

11.
Lung cytosolic fraction (23500 x g supernatant) activates cAMP synthesis by lung membrane adenylate cyclase (AC). 23 kDa and 29 kDa proteins were isolated from rabbit lung cytosolic fraction in a homogeneous state, as 'activators' of lung membrane AC. Both of these proteins possess high adenylate kinase (AK) activity and are able to mimic the 'activating' effect of lung cytosol on the lung membrane AC in the standard incubation mixture devoid of adenylate kinase. The activating effect is abolished in the presence of adenylate kinase inhibitor DAPP and after heat- or trypsin-treatment of the cytosolic fraction. Commercial adenylate kinase or nonionic detergent Lubrol PX activate cAMP synthesis by lung membrane AC in a similar manner to that of cytosolic fraction. In the presence of commercial adenylate kinase or Lubrol PX no activating effect of the cytosolic fraction on lung membrane AC is revealed. The ability of cytosolic fraction, commercial adenylate kinase, Lubrol PX or purified 23 kDa and 29 kDa proteins to activate cAMP synthesis by lung membrane AC correlates with their ability to support the constant ATP (AC substrate) concentration in the AC assay mixture. Our data indicate that 'activation' of lung membrane AC in the presence of cytosolic fraction may be produced by cytosolic adenylate kinase activity which regenerates ATP from AMP in the presence of creatine kinase and creatine phosphate providing the substrate for cAMP synthesis by AC.  相似文献   

12.
Discovery of a number of novel and known human genes whose protein products bear striking similarity to two or more wheat gliadin domains raised the possibility that human intestinal non-HLA peptides homologous to celiac T-cell epitopes could play a role in non-HLA gene specification in celiac disease. Database searching of the entire human genome identified only 11 gut-expressed proteins with high T-cell epitope homology, particularly to the DQ2-gamma-I-gliadin epitope (i.e. TFIIA, FOXJ2 and IgD; mean BestFit quality score=40 versus random value of 24). Others were similar to DQ2-alpha-I-gliadin (i.e. PAX9; BestFit quality 46 versus 20 for random), or DQ2-alpha-II-gliadin (PHLDA1, known in mice as the T-cell death-associated gene; BestFit quality 43 versus 30 for random) epitopes. Among proteins previously screened for gliadin homology, noteworthy was achaete scute homologous protein (DQ2-alpha-I-gliadin; BestFit quality 41 versus 22 for random). With the exception of IgD, all are nuclear factors. Paying particular attention to the position of potential major histocompatibility complex (MHC) anchor residues, several were selected for testing in a DQ2-gamma-I-gliadin-restricted T-cell system. All native 10-mer peptides were inactive, even when deamidated, but V96F substitution of deamidated TFIIA amino acid residues 91-100 stimulated IL-2 release at levels exceeding the wheat gliadin positive control. Also active, but only slightly, was L1009F substitution of AIB3 amino acid residues 1004-1013. PlotSimilarity alignment of TFIIAs from eight species revealed subthreshold similarity score in the peptide region, in contrast to the highly conserved amino and carboxy termini. Molecular modeling of TFIIA[V96F] peptide points to an important juxtaposition of an upwardly projecting phenylalanine residue at peptide position 6 that likely contacts a receptor complementarity-determining region, and a downwardly projecting glutamic acid residue that fits into the shallow MHC P7 pocket. These observations tentatively point to a new multi-gene hypothesis for the initiation of celiac disease in which deamidated free human peptides with T-cell epitope homology (particularly those made more homologous by mutation) escape negative selection, as per deamidation of the HEL(48-62) peptide in the hen egg lysozyme model of autoimmunity. Deamidation following peptide release due to injury triggers inflammation, thereafter repeatedly provoked by dietary gliadin immunodominant peptides concentrated in the proximal small intestine.  相似文献   

13.
Rab proteins, one of the subfamilies of ras-like small GTP-binding proteins, are attached to cellular compartments or transport vesicles and may determine the specificity of fusion between these compartments and vesicles. It has been proposed that they alternate between a membrane-bound and a cytosolic state during their functional cycle. We have used a photo-crosslinking approach to identify their cytosolic interaction partners. In vitro synthesized rab5 was cross-linked in the presence of ATP mainly to three cytosolic proteins of 52, 65, and 85 kDa. Sucrose density gradient centrifugation of the cross-linked products suggested that they were part of a 10-14 S complex. Furthermore, rab5 was cross-linked to these and additional cytosolic proteins of 42, 48, and 160 kDa in the absence of ATP. Unexpectedly, upon ATP depletion of the cytosol cross-linked and noncross-linked rab5 was found in a sedimentable high molecular weight structure. Other members of the rab subfamily, but not N-ras, also sedimented under these conditions. Electrophoretic and electron microscopic analysis of the pelleted material revealed that it contained actin filament bundles and intermediate filaments. Our data suggest that cytosolic rab proteins interact with several proteins in a 10-14 S complex, and that the rab proteins may interact directly or indirectly via this complex with the cytoskeleton.  相似文献   

14.
The function of the human T-cell leukemia virus (HTLV) Rex phosphoprotein is to increase the level of the viral structural and enzymatic gene products expressed from the incompletely spliced viral RNAs containing the Rex-responsive element. The phosphorylation of HTLV type 2 Rex (Rex-2), predominantly on serine residues, correlates with an altered conformation, as detected by a gel mobility shift, and is required for specific binding to its viral RNA target sequence. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether the virus exists in a latent or a productive state. A mutational analysis of Rex-2 that focused on serine and threonine residues was performed to identify regions or domains within Rex-2 important for function, with a specific emphasis on identifying Rex-2 phosphorylation mutants. We identified mutations near the carboxy terminus that disrupted a novel region or domain and abrogated Rex-2 function. Mutant M17 (with S151A and S153A mutations) displayed reduced phosphorylation that correlated with reduced function. Replacement of both serine residues 151 and 153 with phosphomimetic aspartic acid restored Rex-2 function and locked Rex-2 in a phosphorylated active conformation. A mutant containing threonine residues at positions 151 and 153 displayed a phenotype indistinguishable from that of wild-type Rex. Furthermore, this same mutant showed increased threonine phosphorylation and decreased serine phosphorylation, providing conclusive evidence that one or both of these residues are phosphorylated in vivo. Our results provide the first direct evidence that the phosphorylation of Rex-2 is important for function. Further understanding of HTLV Rex phosphorylation will provide insight into the regulatory control of HTLV replication and ultimately the pathobiology of HTLV.  相似文献   

15.
Ligation of the Fas molecule expressed on the surface of a cell initiates multiple signaling pathways that result in the apoptotic death of that cell. We have examined Mg2+ mobilization as well as Ca2+ mobilization in B cells undergoing Fas-initiated apoptosis. Our results indicate that cytosolic levels of free (non-complexed) Mg2+ ([Mg2+]i) and Ca2+ ([Ca2+]i) increase in cells undergoing apoptosis. Furthermore, the percentages of cells mobilizing Mg2+, fragmenting DNA, or externalizing phosphatidylserine (PS) increase in parallel as the concentration of anti-Fas monoclonal antibody is raised. Kinetic analysis suggests that Mg2+ mobilization is an early event in apoptosis, clearly preceding DNA fragmentation and probably occurring prior to externalization of PS as well. The source of Mg2+ that produces the increases in [Mg2+]i is intracellular and most likely is the mitochondria. Extended pretreatment of B cells with carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial oxidative phosphorylation, produces proportional decreases in the percentage of cells mobilizing Mg2+, fragmenting DNA, and externalizing PS in response to anti-Fas monoclonal antibody treatment. These observations are consistent with the hypothesis that elevated [Mg2+]i is required for apoptosis. Furthermore, we propose that the increases in [Mg2+]i function not only as cofactors for Mg2+-dependent endonucleases, but also to facilitate the release of cytochrome c from the mitochondria, which drives many of the post-mitochondrial, caspase-mediated events in apoptotic cells.  相似文献   

16.
Summary Membrane proteins of human erythrocytes can be phosphorylated not only by membrane casein kinase (MS) but also by cytosolic casein kinases CS and CTS, resembling casein kinase I and II, respectively.Casein kinase CS, like membrane casein kinase MS, preferentially phosphorylates membrane proteins such as band 2 (spectrin, -subunit) and band 3, which are the major phosphate-acceptor proteins in the endogenous phosphorylation of isolated ghosts in the presence of [-32P]ATP.By contrast, cytosolic casein kinase CTS phosphorylates, in addition to band 2, some membrane proteins, whose endogenous phosphorylation in isolated ghosts under the same conditions is negligible, if any.The CS- and CTS-catalyzed phosphorylations exhibit different response to increasing NaCl (or KCI) concentrations up to physiological levels (140 mM KCI, 20 mM NaCI); i.e. CS-and MS-catalyzed phosphorylations are strongly inhibited by 75–150 mM KCI (or NaCl), while CTS-catalyzed phosphorylation is practically unaffected.In the absence of added NaCl, CS- and MS-catalyzed phosphorylations are markedly inhibited by 1.5-3 mM 2,3-bisphosphoglycerate, whereas CTS-catalyzed phosphorylation appears to be practically unaffected.Finally, CS- and MS-catalyzed phosphorylations are slightly inhibited also by 1 mM spermine, while CTS-catalyzed phosphorylation is enhanced by this polycation concentration.  相似文献   

17.
Histidine triad nucleotide-binding (HinT) proteins are dimeric proteins that bind to purines and are found in all three kingdoms: the eukarya, bacteria and archaea. In eukaryotes, HinT proteins have been detected intracellularly, but their function is unknown. Until now, knowledge about HinT proteins in prokaryotes was restricted to sequence similarities and nucleotide-binding studies. In this study, we provide evidence that, in the cell wall-less prokaryote, Mycoplasma hominis, the gene encoding the HinT protein forms an operon with two other genes. These genes encode the species-specific membrane proteins, P60 and P80, which are associated within the mycoplasma membrane. The finding that HinT interacts with this complex by binding to P80 provides novel insight into the organization of bacterial HinT proteins.  相似文献   

18.
19.
The role of distinct regions of HLA class I molecules in regulating T-cell activation via the CD3-antigen receptor complex was investigated. Monoclonal antibodies (MoAbs) which recognize monomorphic and polymorphic epitopes on HLA Class I molecules were shown to inhibit T-cell proliferation to OKT3. These MoAbs have differential effects on the synthesis of interleukin-2 (IL-2) and IL-2 receptor expression. Cell cycle analysis demonstrated that these MoAbs function both in inhibiting cell cycle entry (G0-G1 shift) and in blocking cell cycle progression (G1-S shift) of activated T cells. Furthermore, these MoAbs have regulatory effects on the alternate pathway of T-cell activation via the CD2 molecule, T-cell activation induced by PHA, and activation induced by the phorbol ester PMA in conjunction with the calcium ionophore Ionomycin. Thus these MoAbs have different effects depending upon the pathway of T-cell activation. The results indicate that HLA class I molecules are selectively involved in the sequence of intracellular events leading to T-cell activation and proliferation.  相似文献   

20.
Activation of the Raf serine/threonine protein kinases is tightly regulated by multiple phosphorylation events. Phosphorylation of either tyrosine 340 or 341 in the catalytic domain of Raf-1 has been previously shown to induce the ability of the protein kinase to phosphorylate MEK. By using a combination of mitogenic and enzymatic assays, we found that phosphorylation of the adjacent residue, serine 338, and, to a lesser extent, serine 339 is essential for the biological and enzymatic activities of Raf-1. Replacement of S338 with alanine blocked the ability of prenylated Raf-CX to transform Rat-1 fibroblasts. Similarly, the loss of S338-S339 in Raf-1 prevented protein kinase activation in COS-7 cells by either oncogenic Ras[V12] or v-Src. Consistent with phosphorylation of S338-S339, acidic amino acid substitutions of these residues partially restored transforming activity to Raf-CX, as well as kinase activation of Raf-1 by Ras[V12] or v-Src. Two-dimensional phosphopeptide mapping of wild-type Raf-CX and Raf-CX[A338A339] confirmed the presence of a phosphoserine-containing peptide with the predicted mobility in the wild-type protein which was absent from the mutant. This peptide could be quantitatively precipitated by an antipeptide antibody specific for the 18-residue tryptic peptide containing S338-S339 and was demonstrated to contain only phosphoserine. Phosphorylation of this peptide in Raf-1 was significantly increased by coexpression with Ras[V12]. These data demonstrate that Raf-1 residues 338 to 341 constitute a unique phosphoregulatory site in which the phosphorylation of serine and tyrosine residues contributes to the regulation of Raf by Ras, Src, and Ras-independent membrane localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号