首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the observed cytoprotective effect of the intracellularly permeable radical scavenger cysteamine (+NH3CH2CH2SH) in cells exposed to ultrasound and the lack of protection by its oxidized cell-nonpermeable form, cystamine (+NH3CH2CH2S-SCH2CH2NH3+), it was suggested that inertial cavitation (the growth of small gas bubbles present in the liquid exposed to ultrasound and their subsequent violent collapse) and associated free radical production may occur intracellularly (Radiat. Res. 89:369; 1982). Here we demonstrate that high concentrations (> 10 mM) of the thiol cysteamine effectively lower H2O2 yields following ultrasound exposure in argon- and air-saturated phosphate buffered saline (PBS), while cystamine is less effective under argon and practically without effect in air-saturated PBS. Direct removal of H2O2 by cysteamine is the dominant mechanism while scavenging of the H2O2 precursors .OH and superoxide plays a lesser role. Since H2O2 is a known cytotoxic species capable of penetrating cells if produced extracellularly, these results offer an alternative hypothesis for the protective effect of cysteamine and the lack of protection by cystamine, based on their differential ability to lower ultrasound-dependent H2O2 yields, without the necessity of invoking intracellular cavitation.  相似文献   

2.
The enhancement of melphalan toxicity was observed by preincubation of V-79- 379A cells in spinner culture with multiple doses of misonidazole (miso) or SR-2508 under hypoxic conditions. Chemosensitization was shown to be a function of sensitizer concentration and duration of exposure to the alkylating agent. A preincubation exposure of cells with 5 mM miso reduced endogenous cell thiols to less than 5% of controls and enhanced melphalan toxicity by a factor of 4.7. Cells preincubated with miso not only had lower levels of nonprotein thiols, but also were shown to have altered levels of intracellular calcium and a lower threshold to oxidative stress as measured by toxicity to cysteamine or H2O2. Preincubated cells, hypoxic cells, and cells receiving moderate hyperthermia (42.5 degrees C for 3 hr) all showed increased sensitivity to either cysteamine or H2O2. The increased killing of preincubated cells by cysteamine was shown to be similar to that of H2O2, and the dramatic reduction of cysteamine toxicity by catalase indicated H2O2 was the major reaction associated with this effect. These results indicate that preincubated cells exhibit a variety of biological effects that may significantly influence their response to further treatment with drugs or radiation, especially where peroxidative and free radical mechanisms are involved. The depletion of endogenous thiols, calcium disturbance, and vulnerability to oxidative stress are factors to be considered when interpreting mechanisms of combined drug action and effects that may potentially be exploited in terms of therapeutic gains.  相似文献   

3.
Myeloperoxidase-oxidase oxidation of cysteamine.   总被引:2,自引:2,他引:0       下载免费PDF全文
Cysteamine oxidation was shown to be catalysed by nanomolar concentrations of myeloperoxidase in a peroxidase-oxidase reaction, i.e. an O2-consuming oxidation of a compound catalysed by peroxidase without H2O2 addition. When auto-oxidation of the thiol was prevented by the metal-ion chelator diethylenetriaminepenta-acetic acid, native, but not heat-inactivated, myeloperoxidase induced changes in the u.v.-light-absorption spectrum of cysteamine. These changes were consistent with disulphide (cystamine) formation. Concomitantly, O2 was consumed and superoxide radical anion formation could be detected by Nitro Blue Tetrazolium reduction. Both superoxide dismutase and catalase inhibited the reaction, whereas the hydroxyl-radical scavengers mannitol and ethanol did not. O2 consumption increased with increasing pH (between pH 6.0 and 8.0), and 50% inhibition was exhibited by about 3 mM-NaCl at pH 7.0 and by about 100 mM-NaCl at pH 8.0. Cysteamine was about 5 times as active (in terms of increased O2 consumption at pH 7.5) as the previously reported peroxidase-oxidase substrates NADPH, dihydroxyfumaric acid and indol-3-ylacetic acid. A possible reaction pathway for the myeloperoxidase-oxidase oxidation of cysteamine is discussed. These results indicate that cysteamine is a very useful substrate for studies on myeloperoxidase-oxidase activity.  相似文献   

4.
Thiols as myeloperoxidase-oxidase substrates.   总被引:2,自引:2,他引:0       下载免费PDF全文
Nine low-Mr thiols were compared with regard to their ability to function as myeloperoxidase-oxidase substrates under conditions where no auto-oxidation of the thiols could be observed. The methyl and ethyl esters of cysteine were found to be about twice as active as cysteamine at pH 7.0, in terms of increased O2 consumption. Cysteine itself was poorly active, whereas glutathione, N-acetylcysteine and penicillamine were completely inactive as myeloperoxidase-oxidase substrates under these conditions. The structure-activity relationships indicated that both a free thiol and free amino group were required for peroxidase-oxidase activity, and also that a free carboxy group abolished activity. In analogy with cysteamine, the activities of both cysteine esters were inhibited by superoxide dismutase (less than 5 micrograms/ml) and by catalase and not by the hydroxyl-radical scavenger mannitol. In contrast with cysteamine, the activities of both cysteine esters were stimulated more than 2-fold by high concentrations (greater than 5 micrograms/ml) of superoxide dismutase. The activities of both cysteine esters exhibited broad pH optima at pH 7. A mechanism for the myeloperoxidase-oxidase oxidation of the cysteine esters is proposed, which is partly different from that previously proposed for cysteamine.  相似文献   

5.
It has been suggested that taurine, hypotaurine and their metabolic precursors (cysteic acid, cysteamine and cysteinesulphinic acid) might act as antioxidants in vivo. The rates of their reactions with the biologically important oxidants hydroxyl radical (.OH), superoxide radical (O2.-), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) were studied. Their ability to inhibit iron-ion-dependent formation of .OH from H2O2 by chelating iron ions was also tested. Taurine does not react rapidly with O2.-, H2O2 or .OH, and the product of its reaction with HOCl is still sufficiently oxidizing to inactivate alpha 1-antiproteinase. Thus it seems unlikely that taurine functions as an antioxidant in vivo. Cysteic acid is also poorly reactive to the above oxidizing species. By contrast, hypotaurine is an excellent scavenger of .OH and HOCl and can interfere with iron-ion-dependent formation of .OH, although no reaction with O2.- or H2O2 could be detected within the limits of our assay techniques. Cysteamine is an excellent scavenger of .OH and HOCl; it also reacts with H2O2, but no reaction with O2.- could be measured within the limits of our assay techniques. It is concluded that cysteamine and hypotaurine are far more likely to act as antioxidants in vivo than is taurine, provided that they are present in sufficient concentration at sites of oxidant generation.  相似文献   

6.
Irradiation of aqueous solutions of native calf thymus DNA with x-rays produced functional groups that reacted with sodium borohydride. The DNA was labeled with tritium from NaB3H4 to the extent of 2.0 x 10(-10) atom/dalton/rad. The presence of cysteamine or other radical scavengers, or saturation of the solution with nitrogen during irradiation decreased the labeling. After mild acid hydrolysis, the major tritium-containing moiety was identical with 2,3-dihydroxy-2-methylpropanoic acid in all chromatographic systems tested. The suggested mechanism of labeling involved reduction by borohydride of the potential aldehyde at carbon 6 of thymine glycol residues present in the irradiated DNA.  相似文献   

7.
Anaerobic enrichment cultures with H2S and N2O as substrates which were inoculated with a biofilm sample showed rapid growth and gas formation after 2 to 3 days at 27 degrees C. By using the deep-agar dilution technique, a pure culture was obtained. The strain was tentatively identified as Thiobacillus denitrificans. The isolate was used for batch and gradient culture studies under denitrifying conditions, oxidizing H2S with concomitant reduction of N2O to N2. In batch culture, oxidation of H2S was stepwise, with transient accumulation of elemental sulfur; the final oxidation product was SO4(2-). In gradient culture, there was no notable accumulation of elemental sulfur and microsensor measurements of H2S and N2O showed that H2S was oxidized directly to SO4(2-). In the presence of C2H2, however, oxidation of H2S stopped at the level of elemental sulfur and no SO4(2-) was produced in either batch or gradient cultures. This is a hitherto unknown inhibitory effect of C2H2. The inhibition is suggested to occur at the level of sulfite reductase, which catalyzes the oxidation of elemental sulfur to SO3(2-) in T. denitrificans. However, reduction of N2O in this strain was, surprisingly, not affected by C2H2. The isolate is the first chemolithoautotrophic organism shown to reduce N2O in the presence of C2H2. Denitrification in natural ecosystems is often quantified as N2O accumulation after C2H2 addition. However, the presence of large numbers of similar organisms with C2H2-insensitive N2O reduction could lead to underestimation of in situ rates.  相似文献   

8.
Heating of mouse bone marrow cells up to 42 degrees C was shown to increase their radiosensitivity (DMF = 0.80 +/- 0.12). At this temperature, the radioprotective efficiency of cysteamine was lost completely (DMF = 0.78 +/- 0.09), and radioprotective activity of d,l-isoproterenol significantly decreased (DMF declined from 2.41 +/- 0.23 to 1.67 +/- 0.16). It is assumed that the radioprotective effect of cysteamine on mammalian cells is associated with the processes of the postirradiation DNA repair for just these processes are inhibited by heating. The mechanism of action of a beta-agonist of isoproterenol is perhaps only partially associated with DNA repair.  相似文献   

9.
Anaerobic enrichment cultures with H2S and N2O as substrates which were inoculated with a biofilm sample showed rapid growth and gas formation after 2 to 3 days at 27 degrees C. By using the deep-agar dilution technique, a pure culture was obtained. The strain was tentatively identified as Thiobacillus denitrificans. The isolate was used for batch and gradient culture studies under denitrifying conditions, oxidizing H2S with concomitant reduction of N2O to N2. In batch culture, oxidation of H2S was stepwise, with transient accumulation of elemental sulfur; the final oxidation product was SO4(2-). In gradient culture, there was no notable accumulation of elemental sulfur and microsensor measurements of H2S and N2O showed that H2S was oxidized directly to SO4(2-). In the presence of C2H2, however, oxidation of H2S stopped at the level of elemental sulfur and no SO4(2-) was produced in either batch or gradient cultures. This is a hitherto unknown inhibitory effect of C2H2. The inhibition is suggested to occur at the level of sulfite reductase, which catalyzes the oxidation of elemental sulfur to SO3(2-) in T. denitrificans. However, reduction of N2O in this strain was, surprisingly, not affected by C2H2. The isolate is the first chemolithoautotrophic organism shown to reduce N2O in the presence of C2H2. Denitrification in natural ecosystems is often quantified as N2O accumulation after C2H2 addition. However, the presence of large numbers of similar organisms with C2H2-insensitive N2O reduction could lead to underestimation of in situ rates.  相似文献   

10.
Stimulation by the tripeptide N-formyl norleucyl leucyl phenylalanine (FNLLP) of the guinea pig alveolar macrophage gives rise to transient production of superoxide anion (O2-). Components of the phosphatidyl inositol (PI) cycle (phosphatidic acid (PA), phosphatidyl inositol-4,5-bisphosphate (TPI) and phosphatidyl inositol-4-phosphate (DPI) were monitored using 32P in order to examine the possible association of this cycle with the FNLLP-stimulated production of O2-. Macrophage stimulation by FNLLP led to an increased flux of metabolites through the PI cycle. The level of 32P label in both TPI and DPI rapidly decreased upon exposure to FNLLP, followed by a 5-min period during which the 32P label in TPI and DPI approached prestimulated levels. During this period, there was a fivefold increase in 32P-PA. It is suggested that diacylglycerol (DAG) is the O2- -activating intermediate in the stimulated mechanism, as evidenced by the buildup of PA (for which DAG is the precursor) in parallel with the time course of O2- production. The importance of continued cycling of PI in the stimulated mechanism is demonstrated by the inhibition by LiCl of the extent, but not the initial rate, of both O2- production and the formation of 32P-PA upon peptide stimulation after 1-h preincubation with 10 mM LiCl. The influence of calcium on this mechanism was also examined. It has previously been demonstrated that intracellular availability of calcium can influence the rate and extent of O2- production. In cells preloaded with quin-2, which acts as a high-affinity sink for calcium in the cytosol, the initial rate of FNLLP-stimulated O2- production is inhibited in low (10 microM) extracellular calcium medium. High extracellular calcium (1 mM) completely reverses this inhibition and also significantly extends the time course of O2- production in both quin-2 and control cells (Stickle et al., 1984). In parallel with these effects on O2- production, varying calcium conditions is demonstrated to influence the rate and extent of PA formation. These same calcium conditions were found to have little or no effect on the initial unstimulated levels of TPI, DPI, and PA. These results indicate that the influence of an intracellular pool of calcium on O2- production may be via its influence on stimulated PI turnover.  相似文献   

11.
The purpose of this study was to evaluate whether the addition of cysteamine during in vitro maturation (IVM) of buffalo oocytes enhances embryo development. Cumulus-oocyte complexes (COC) from slaughterhouse ovaries were matured in vitro in TCM 199 supplemented with 10% fetal calf serum (FCS), 0.5 microg mL(-1) FSH, 5 microg mL(-1) LH, 1 microg mL(-1) 17 beta estradiol and 0 (control), 50, 100 or 200 micromol L(-1) of cysteamine for 24 hours. The matured oocytes then were fertilized and cultured for 7 days. No beneficial effect on maturation and cleavage rate was related to the addition of cysteamine. However, the percentage of embryos that developed to compact morula and blastocyst stage was significantly higher (P < or = 0.01) for oocytes matured in medium containing 50 micromol L(-1) of cysteamine than it was for oocytes matured with 0, 100 and 200 micromol L(-1) cysteamine (22.6% vs 14.9%, 15.7% and 13% respectively); moreover, the addition of 50 micromol L(-1) of cysteamine during IVM significantly (P < or = 0.01) increased the proportion of transferable quality (Grades 1 and 2) embryos (19.3% vs 11.3%, 11.6% and 11.2% respectively). The present study showed that adding a thiol compound (such as cysteamine) to the IVM medium improves buffalo in vitro embryo production (IVEP) efficiency, which so far has been unsatisfactory.  相似文献   

12.
Cysteamine, a coenzyme A metabolite, induces duodenal ulcers in rodents. Our recent studies showed that ulcer formation was aggravated by iron overload and diminished in iron deficiency. We hypothesized that cysteamine is selectively taken up in the duodenal mucosa, where iron absorption primarily occurs, and is transported by a carrier-mediated process. Here we report that cysteamine administration in rats leads to cysteamine accumulation in the proximal duodenum, where the highest concentration of iron in the gastrointestinal tract is found. In vitro, iron loading of intestinal epithelial cells (IEC-6) accelerated reactive oxygen species (ROS) production and increased [(14)C]cysteamine uptake. [(14)C]Cysteamine uptake by isolated gastrointestinal mucosal cells and by IEC-6 was pH-dependent and inhibited by unlabeled cysteamine. The uptake of [(14)C]cysteamine by IEC-6 was Na(+)-independent, saturable, inhibited by structural analogs, H(2)-histamine receptor antagonists, and organic cation transporter (OCT) inhibitors. OCT1 mRNA was markedly expressed in the rat duodenum and in IEC-6, and transfection of IEC-6 with OCT1 siRNA decreased OCT1 mRNA expression and inhibited [(14)C]cysteamine uptake. Cysteamine-induced duodenal ulcers were decreased in OCT1/2 knockout mice. These studies provide new insights into the mechanism of cysteamine absorption and demonstrate that intracellular iron plays a critical role in cysteamine uptake and in experimental duodenal ulcerogenesis.  相似文献   

13.
Reaction of elemental copper and zinc powder mixtures with glycine (NH2.CH2COOH; HA) or aspartic acid (NH2CHCOOHCH2COOH; H2B) (in 1:1:2 ratio, respectively) in the presence of excess hydrogen peroxide (H2O2) at 50 degrees C, results in the formation of a new mixed metal peroxy carbonate compound corresponding to formula [Cu(Zn)2(O2(2-) (CO3)2(H2O)4], while the same reaction with elemental copper powder alone yields merely peroxy amino acid compounds having the formula [Cu(O2(2-)) (HA)2(H2O)] and [Cu(O2(2-)) (H2B) (H2O)2] for glycine and aspartic acid, respectively. These compounds have been characterized by elemental analysis, ESR, and electronic and IR spectra. It is interesting to note that both amino acids are converted to carbonate in the presence of zinc alone. A method analogous to that described above, for the reaction of elemental copper, zinc powder mixtures with succinic acid [(CH2COOH)2] or acetic acid (CH3COOH) in excess H2O2, on the other hand, gave a product essentially comprising copper succinate or acetate, respectively. These observations suggest an interesting and perhaps important phenomenon by which only the simple amino acids such as glycine and aspartic acid are converted to carbonates while their corresponding carboxylic acids form only their respective salts.  相似文献   

14.
The radioprotective role of endogenous and exogenous thiols was investigated, with survival as the end-point, after radiation exposure of cells under oxic and hypoxic conditions. Human cell strains originating from a 5-oxoprolinuria patient and from a related control were used. Due to a genetic deficiency in glutathione synthetase, the level of free SH groups, and in particular that of glutathione, is decreased in 5-oxoprolinuria cells. The glutathione synthetase deficient cells have a reduced oxygen enhancement ratio (1.5) compared to control cells (2.7). The radiosensitivity was assessed for both cell strains in the presence of different concentrations of an exogenous radioprotector:cysteamine. At concentrations varying between 0.1 and 20 mM, cysteamine protected the two cell strains to the same extent when irradiated under oxic and hypoxic conditions. The protective effect of cysteamine was lower under hypoxia than under oxic conditions for both cell strains. Consequently, the oxygen enhancement ratio decreased for both cell strains when cysteamine concentration increased. These results suggest that cysteamine cannot replace endogenous thiols as far as they are implicated in the radiobiological oxygen effect.  相似文献   

15.
1. The effects of subcutaneous injection of cysteamine (2-mercaptoethylamine, 300 mg/kg) were investigated in 5-6 week-old chickens. 2. In the short term (1 hr), cysteamine increased plasma levels of glucose, free fatty acids and insulin, and decreased that of alpha-amino non protein nitrogen. 3. In a longer term (17-24 hr), cysteamine increased the plasma level of glucose, did not modify those of alpha-amino non protein nitrogen, insulin and glucagon and decreased that of free fatty acids. 4. The disposal of an oral glucose load was impaired and the glucose-induced inhibition of pancreatic glucagon and stimulation of insulin release were blunted 17 hr after cysteamine administration. 5. Therefore, cysteamine exerts multiple effects on chicken pancreatic islet cells.  相似文献   

16.
N-Acetylcysteine (NAC) is protective against acetaminophen-induced hepatotoxicity primarily by providing precursor for the glutathione synthetase pathway, while cysteamine has been demonstrated to alter the cytochrome P-450 dependent formation of toxic acetaminophen metabolite. Mice administered acetaminophen (500 mg/kg) had elevations of serum alanine aminotransferase (ALT) to 273.0 +/- 37.5 and 555.8 +/- 193.4 U/mL at 12 and 24 h, respectively, after injection. Administration of cysteamine (100 mg/kg) or NAC (500 mg/kg) significantly reduced serum ALT activity (p less than 0.001). Reducing the dose of NAC or cysteamine by 50% greatly reduced their hepatoprotective effect while the co-administration of the reduced doses of NAC (250 mg/kg) and cysteamine (50 mg/kg) following acetaminophen overdose prevented elevation of serum ALT activity (39.2 +/- 1.17 and 32.5 +/- 5.63 U/mL at 12 and 24 h post-injection, p less than 0.001) and preserved normal mouse hepatic histology. Neither NAC (500 mg/kg), cysteamine (100 mg/kg), or the lower doses in combination of both agents were found to alter the half-life or peak levels of acetaminophen. Liver microsomal aryl hydrocarbon hydroxylase activity measured 24 h after drug administration was not significantly different between treatment groups and controls receiving only saline. These results indicate a possible role for the concomitant use of NAC and cysteamine in the prevention of hepatic necrosis following toxic doses of acetaminophen. Neither decrease in plasma acetaminophen levels nor depression of cytochrome P-450 enzyme activity appears to be the mechanism of protection when these doses of NAC, cysteamine, or both drugs together are administered with a toxic dose of acetaminophen in mice.  相似文献   

17.
Pantethine, a cysteamine precursor, depletes somatostatin in the cerebral cortex and hypothalamus and prolactin in the anterior pituitary and hypothalamus. This study investigated the effect of pantethine on oxytocin and arginine vasopressin content in the posterior pituitary and hypothalamus. Male Long-Evans rats were injected intraperitoneally with escalating doses of pantethine (i.e., 146.7 mg, 293.4 mg and 586.6 mg/100 gm body weight). Hormone content was determined by radioimmunoassay. Three hours after pantethine treatment, the oxytocin content in the posterior pituitary and the hypothalamus was markedly reduced with all doses of the drug. Vasopressin content in the posterior pituitary and hypothalamus was decreased but to a lesser extent than oxytocin and only with the highest dose of pantethine. Pantethine may act to reduce oxytocin and vasopressin content through intracellular conversion to cysteamine. The exact mechanism of action of pantethine on oxytocin and vasopressin remains to be elucidated.  相似文献   

18.
We investigated the effects of cysteamine on the pancreatic islet hormones and found that pancreatic somatostatin contents depleted 60 min after the oral administration of cysteamine (300 mg/kg) to rats, yet the insulin and glucagon contents remained unchanged. When pancreatic islets isolated by collagenase digestion were incubated for 60 min in Krebs-Ringer bicarbonate buffer containing 0.1, 1, or 10 mM cysteamine, cysteamine dose-dependently decreased the somatostatin content, however, only a high concentration (10 mM) decreased the insulin level, and cysteamine exerted no effect on the glucagon content. The islet hormones (synthetic somatostatin-14, synthetic somatostatin-28, extracted pork insulin and extracted pork glucagon) were incubated for 60 min with cysteamine (0.1, 1, or 10 mM) and somatostatin-14 was found to be markedly decreased by 1 mM cysteamine. Pork insulin but not pork glucagon was dose-dependently decreased by 0.1-10 mM cysteamine. Cysteamine, 0.1-1 mM, did not interfere with the radio-immunoassay system for somatostatin or insulin, although 10 mM cysteamine did so. This compound exerted no effect on the radioimmunoassay system for glucagon. Our studies support earlier findings that cysteamine administered to experimental animals plays a role of relatively specific depletor of somatostatin. The possibility that the depletion of somatostatin is in part due to the remarkable sensitivity of the intracellular compartments of the D cells to the drug and in part due to the remarkable sensitivity of the molecular structure of somatostatin has to be considered.  相似文献   

19.
An HPLC method with coulometric detection is presented for the quantitation of cysteamine, cystamine, thialysine, glutathione, glutathione disulfide and an oxidized metabolite of thialysine [S-(2-aminoethyl)-l-cysteine ketimine decarboxylated dimer (AECK-DD)]. The advantage of coulometric detection is that derivatization is unnecessary if the analyte is redox sensitive. The method was used to quantitate several sulfur-containing compounds in plasma and brain following gavage feeding of cysteamine to rats. Cysteamine, cystamine, thialysine and AECK-DD were detected in the brains of these animals. Interestingly, cysteamine treatment resulted in greatly elevated levels of cerebral methionine, despite the fact that cysteamine is not a precursor of methionine.  相似文献   

20.
A purified hepatic microsomal mixed-function drug oxidase (EC 1.14.13.8) catalyzes oxidation of cysteamine to cystamine. Since cysteamine is a normal intracellular metabolite, this reaction could provide an enzymic mechanism for the continuous generation of disulfides required for formation of disulfide bonds in newly synthesized proteins. This hypothesis was tested by studying the renaturation of reduced ribonuclease in media containing glutathione reductase, purified microsomal oxidase, an NADPH-generating system, and physiological concentrations of glutathione and cysteamine. Under these conditions renaturation of reduced-disorganized ribonuclease is completely dependent upon the microsomal oxidase, and optimal renaturation rates are obtained when the relative activities of glutathione reductase and cysteamine oxidase approximate levels present in whole liver homogenates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号