首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that induces parkinsonism in human and non-human primates. Its mechanism of action is not fully elucidated.Recently, the participation of trace metals, such as manganese, on its neurotoxic action has been postulatted. In this work, we studied the effect of manganese administration on the neurochemical consequences of MPTP neurotoxic action. Male Swiss albino mice were treated with manganese chloride (MnCl2 ·4H2O; 0.5 mg/ml or 1.0 mg/ml of drinking water) for 7 days, followed by three MPTP administrations (30 mg/Kg, intraperitoneally). Seven days after the last MPTP administration, mice were sacrificed and dopamine and homovanillic acid contents in corpus striatum were analyzed. Striatal concentration of dopamine was found increased by 60% in mice pretreated with 0.5 mg/ml and 52% in the group treated of 1.0 mg/ml as compared versus animals treated with MPTP only. Hornovanillic acid content in both groups treated with manganese was the same as those in control animals. The results indicate that manganese may interact with MPTP, producing an enhancement of striatal dopamine turnover, as the protective effect of manganese was more pronounced in the metabolite than in the neurotransmitter.  相似文献   

2.
Recessively inherited loss-of-function mutations in the parkin , DJ-1 , or PINK1 gene are linked to familial cases of early-onset Parkinson's diseases (PD), and heterozygous mutations are associated with increased incidence of late-onset PD. We previously reported that single knockout mice lacking Parkin, DJ-1, or PINK1 exhibited no nigral degeneration, even though evoked dopamine release from nigrostriatal terminals was reduced and striatal synaptic plasticity was impaired. In this study, we tested whether inactivation of all three recessive PD genes, each of which was required for nigral neuron survival in the aging human brain, resulted in nigral degeneration during the lifespan of mice. Surprisingly, we found that triple knockout mice lacking Parkin, DJ-1, and PINK1 have normal morphology and numbers of dopaminergic and noradrenergic neurons in the substantia nigra and locus coeruleus, respectively, at the ages of 3, 16, and 24 months. Interestingly, levels of striatal dopamine in triple knockout mice were normal at 16 months of age but increased at 24 months. These results demonstrate that inactivation of all three recessive PD genes is insufficient to cause significant nigral degeneration within the lifespan of mice, suggesting that these genes may be protective rather than essential for the survival of dopaminergic neurons during the aging process. These findings also support the notion that mammalian Parkin and PINK1 may function in the same genetic pathway as in Drosophila .  相似文献   

3.
Parkinson's disease is a debilitating neurodegenerative disease characterized by loss of midbrain dopaminergic neurons. These neurons are particularly sensitive to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes parkinsonian syndromes in humans, monkeys and rodents. Although apoptotic cell death has been implicated in MPTP/MPP+ toxicity, several recent studies have challenged the role of caspase-dependent apoptosis in dopaminergic neurons. Using the midbrain-derived MN9D dopaminergic cell line, we found that MPP+ treatment resulted in an active form of cell death that could not be prevented by caspase inhibitors or over-expression of a dominant negative inhibitor of apoptotic protease activating factor 1/caspase-9. Apoptosis inducing factor (AIF) is a mitochondrial protein that may mediate caspase-independent forms of regulated cell death following its translocation to the nucleus. We found that MPP+ treatment elicited nuclear translocation of AIF accompanied by large-scale DNA fragmentation. To establish the role of AIF in MPP+ toxicity, we constructed a DNA vector encoding a short hairpin sequence targeted against AIF. Reduction of AIF expression by RNA interference inhibited large-scale DNA fragmentation and conferred significant protection against MPP+ toxicity. Studies of primary mouse midbrain cultures further supported a role for AIF in caspase-independent cell death in MPP+-treated dopaminergic neurons.  相似文献   

4.
Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.  相似文献   

5.
There is evidence that an inflammatory microglial reaction participates in the pathophysiology of dopaminergic neuronal death in Parkinson's disease and in animal models of the disease. However, this phenomenon remains incompletely characterized. Using an in vitro model of neuronal/glial mesencephalic cultures, we show that the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) stimulates the proliferation of microglial cells at concentrations that selectively reduce the survival of DA neurones. The mitogenic action of MPP+ was not the mere consequence of neuronal cell demise as the toxin produced the same effect in a model system of neuronal/glial cortical cultures, where target DA neurones are absent. Consistent with this observation, the proliferative effect of MPP+ was also detectable in neurone-free microglial/astroglial cultures. It disappeared, however, when MPP+ was added to pure microglial cell cultures suggesting that astrocytes played a key role in the mitogenic mechanism. Accordingly, the proliferation of microglial cells in response to MPP+ treatment was mimicked by granulocyte macrophage colony-stimulating factor (GM-CSF), a proinflammatory cytokine produced by astrocytes and was blocked by a neutralizing antibody to GM-CSF. Thus, we conclude that the microglial reaction observed following MPP+ exposure depends on astrocytic factors, e.g. GM-CSF, a finding that may have therapeutic implications.  相似文献   

6.
Ginkgo biloba extract (EGb), a potent antioxidant and monoamine oxidase B (MAO-B) inhibitor, was evaluated for its anti-parkinsonian effects in a 6-hydroxydopamine (6-OHDA) rat model of the disease. Rats were treated with 50, 100, and 150 mg/kg EGb for 3 weeks. On day 21, 2 microL 6-OHDA (10 microg in 0.1% ascorbic acid saline) was injected into the right striatum, while the sham-operated group received 2 microL of vehicle. Three weeks after 6-OHDA injection, rats were tested for rotational behaviour, locomotor activity, and muscular coordination. After 6 weeks, they were killed to estimate the generation of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content, to measure activities of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), and to quantify catecholamines, dopamine (DA) D2 receptor binding, and tyrosine hydroxylase-immunoreactive (TH-IR) fibre density. The increase in drug-induced rotations and deficits in locomotor activity and muscular coordination due to 6-OHDA injections were significantly and dose-dependently restored by EGb. The lesion was followed by an increased generation of TBARS and significant depletion of GSH content in substantia nigra, which was gradually restored with EGb treatment. EGb also dose-dependently restored the activities of glutathione-dependent enzymes, catalase, and SOD in striatum, which had reduced significantly by lesioning. A significant decrease in the level of DA and its metabolites and an increase in the number of dopaminergic D2 receptors in striatum were observed after 6-OHDA injection, both of which were significantly recovered following EGb treatment. Finally, all of these results were exhibited by an increase in the density of TH-IR fibers in the ipsilateral substantia nigra of the lesioned group following treatment with EGb; the lesioning had induced almost a complete loss of TH-IR fibers. Considering our behavioural studies, biochemical analysis, and immunohistochemical observation, we conclude that EGb can be used as a therapeutic approach to check the neuronal loss following parkinsonism.  相似文献   

7.
The pre-synaptic protein, alpha-synuclein, has been associated with the pathogenesis of Parkinson's disease. The present study indicates that alpha-synuclein, but not its mutants (A53T, A30P), can protect CNS dopaminergic cells from the parkinsonism-inducing drug 1-methyl-4-phenylpyridinium (MPP+), whereas it cannot protect from the dopaminergic toxin, 6-hydroxydopamine, hydrogen-peroxide, or the beta-amyloid peptide, A-beta. Protection from MPP+ was directly correlated with the preservation of mitochondrial function. Specifically, alpha-synuclein rescued cells from MPP+ mediated decreases in mitochondrial dehydrogenase activity and loss of ATP levels by utilizing ketosis. It also prevented toxin-induced activation of the creatine kinase/creatine phosphate system. Similarly, alpha-synuclein protected cells from the complex I inhibitor rotenone and 3-nitroproprionic acid, a complex II inhibitor. Wild-type alpha-synuclein-mediated neuroprotection and subsequent alterations in energy were not found in dbcAMP-differentiated cells. These results suggest that the normal physiological role for alpha-synuclein may change during development.  相似文献   

8.
Cell death induced by 6-hydroxydopamine (6-OHDA) is thought to be caused by reactive oxygen species (ROS) derived from 6-OHDA autooxidation and by a possible direct effect of 6-OHDA on the mitochondrial respiratory chain. However, the process has not been totally clarified. In rat primary mesencephalic cultures, we observed a significant increase in dopaminergic (DA) cell loss 24 h after administration of 6-OHDA (40 micromol/L) and a significant increase in NADPH subunit expression, microglial activation and superoxide anion/superoxide-derived ROS in DA cells that were decreased by the NADPH inhibitor apocynin. Low doses of 6-OHDA (10 micromol/L) did not induce a significant loss of DA cells or a significant increase in NADPH subunit expression, microglial activation or superoxide-derived ROS. However, treatment with the NADPH complex activator angiotensin II caused a significant increase in all the latter. Forty-eight hours after intrastriatal 6-OHDA injection in rats, there was still no loss of DA neurons although there was an increase in NADPH subunit expression and NADPH oxidase activity. The results suggest that in addition to the autooxidation-derived ROS and the inhibition of the mitochondrial respiratory chain, early microglial activation and NADPH oxidase-derived ROS act synergistically with 6-OHDA and constitute a relevant and early component of the 6-OHDA-induced cell death.  相似文献   

9.
We evaluated an alternative method to investigate a possible involvement of environmental toxins in the pathology of Parkinson's disease (PD). There is considerable evidence supporting the role of oxidative stress in the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin largely used to modeling PD in primates and rodents. We have recently demonstrated that rats treated with intranasal (i.n.) infusion of MPTP suffer from progressive signs of PD that are correlated with time-dependent degeneration in dopaminergic neurons. In the present study, we investigated the time-dependent (2 h to 7 days) effect of a single i.n. administration of MPTP (0.1 mg/nostril) on the glutathione-related antioxidant status and lipid peroxidation (TBARS) in the adult Wistar rat brain. The effects were more pronounced in the olfactory bulb at 6 h after i.n. MPTP administration, as indicated by an increase in TBARS and total glutathione (GSH-t) levels, and also in the gamma-glutamyl transpeptidase (GGT) activity. Increased levels of TBARS, GSH-t and GGT activity were also observed at 6 h post-MPTP infusion in some structures (e.g. striatum, hippocampus and prefrontal cortex). No difference regarding glutathione reductase activity was observed in any of the brain structures analyzed, while a marked decrease in glutathione peroxidase activity was specifically observed in the substantia nigra 7 days after MPTP treatment. These results demonstrate that a single i.n. infusion of MPTP in rats induces significant alterations in the brain antioxidant status and lipid peroxidation, reinforcing the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD.  相似文献   

10.
Structural and functional alterations of alpha-synuclein is a presumed culprit in the demise of dopaminergic neurons in Parkinson's disease (PD). Alpha-synuclein mutations are found in familial but not in sporadic PD, raising the hypothesis that effects similar to those of familial PD-linked alpha-synuclein mutations may be achieved by oxidative post-translational modifications. Here, we show that wild-type alpha-synuclein is a selective target for nitration following peroxynitrite exposure of stably transfected HEK293 cells. Nitration of alpha-synuclein also occurs in the mouse striatum and ventral midbrain following administration of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Conversely, beta-synuclein and synaptophysin were not nitrated in MPTP-intoxicated mice. Our data demonstrate that alpha-synuclein is a target for tyrosine nitration, which, by disrupting its biophysical properties, may be relevant to the putative role of alpha-synuclein in the neurodegeneration associated with MPTP toxicity and with PD.  相似文献   

11.
Wen L  Wei W  Gu W  Huang P  Ren X  Zhang Z  Zhu Z  Lin S  Zhang B 《Developmental biology》2008,314(1):84-92
We describe an enhancer trap transgenic zebrafish line, ETvmat2:GFP, in which most monoaminergic neurons are labeled by green fluorescent protein (GFP) during embryonic development. The reporter gene of ETvmat2:GFP was inserted into the second intron of vesicular monoamine transporter 2 (vmat2) gene, and the GFP expression pattern recapitulates that of the vmat2 gene. The GFP positive neurons include the large and pear-shaped tyrosine hydroxylase positive neurons (TH populations 2 and 4) in the posterior tuberculum of ventral diencephalon (PT neurons), which are thought to be equivalent to the midbrain dopamine neurons in mammals. We found that these PT neurons and two other GFP labeled non-TH type neuronal groups, one in the paraventricular organ of the posterior tuberculum and the other in the hypothalamus, were significantly reduced after exposure to MPTP, while the rest of GFP-positive neuronal clusters, including those in telencephalon, pretectum, raphe nuclei and locus coeruleus, remain largely unchanged. Furthermore, we showed that the effects of hedgehog signaling pathway inhibition on the development of monoaminergic neurons can be easily visualized in individual living ETvmat2:GFP embryos. This enhancer trap line should be useful for genetic and pharmacological analyses of monoaminergic neuron development and processes underlying Parkinson's disease.  相似文献   

12.
13.
A decrease in total glutathione, and aberrant mitochondrial bioenergetics have been implicated in the pathogenesis of Parkinson's disease. Our previous work exemplified the importance of glutathione (GSH) in the protection of mesencephalic neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. Additionally, reactive oxygen species (ROS) generation was an early, contributing event in malonate toxicity. Protection by ascorbate was found to correlate with a stimulated increase in protein-glutathione mixed disulfide (Pr-SSG) levels. The present study further examined ascorbate-glutathione interactions during mitochondrial impairment. Depletion of GSH in mesencephalic cells with buthionine sulfoximine potentiated both the malonate-induced toxicity and generation of ROS as monitored by dichlorofluorescein diacetate (DCF) fluorescence. Ascorbate completely ameliorated the increase in DCF fluorescence and toxicity in normal and GSH-depleted cultures, suggesting that protection by ascorbate was due in part to upstream removal of free radicals. Ascorbate stimulated Pr-SSG formation during mitochondrial impairment in normal and GSH-depleted cultures to a similar extent when expressed as a proportion of total GSH incorporated into mixed disulfides. Malonate increased the efflux of GSH and GSSG over time in cultures treated for 4, 6 or 8 h. The addition of ascorbate to malonate-treated cells prevented the efflux of GSH, attenuated the efflux of GSSG and regulated the intracellular GSSG/GSH ratio. Maintenance of GSSG/GSH with ascorbate plus malonate was accompanied by a stimulation of Pr-SSG formation. These findings indicate that ascorbate contributes to the maintenance of GSSG/GSH status during oxidative stress through scavenging of radical species, attenuation of GSH efflux and redistribution of GSSG to the formation of mixed disulfides. It is speculated that these events are linked by glutaredoxin, an enzyme shown to contain both dehydroascorbate reductase as well as glutathione thioltransferase activities.  相似文献   

14.
Recent findings suggest that gonadal steroid hormones are neuroprotective and may provide clinical benefits in delaying the development of Parkinson's disease. In this report we investigated the ability of oestradiol to protect mesencephalic dopaminergic neurones cultured in serum-free or serum-supplemented medium from toxicity induced by 6-hydroxydopamine or 1-methyl-4-phenylpyridinium ion (MPP+). The efficiency of both toxins and oestradiol was evaluated by tyrosine hydroxylase (TH) immunocytochemistry, [3H]dopamine ([3H]DA) uptake, length of dopaminergic processes and lactate dehydrogenase (LDH) release measurement. In cultures grown in serum-supplemented medium, a 2-h pre-treatment with high concentrations (10-100 microM) of 17beta-oestradiol or 17alpha-oestradiol, the stereoisomer with weak oestrogenic activity, protected both dopaminergic and non-dopaminergic neurones from toxicity induced by 6-hydroxydopamine (6-OHDA; 40 or 100 microM) and by the high MPP+ concentrations (50 microM) necessary to obtain significant neuronal death under those culture conditions. At these concentrations, MPP+ was no longer selective for dopaminergic neurones but affected all cells present in the culture. In contrast, the hormonal treatments did not protect against selective degeneration of dopaminergic neurones induced by lower MPP+ concentrations (below 10 microM), related to inhibition of complex I of respiratory chain. In cultures grown in serum-free medium, oestradiol concentrations higher than 1 microM induced neuronal degeneration and no protection against 6-OHDA or MPP+ toxicity was observed at lower concentrations of the steroid. The neuroprotective effects of 17alpha- or 17beta-oestradiol evidenced in this model might be due to the antioxidant properties of these compounds. However, other non-genomic effects of the steroids cannot be excluded.  相似文献   

15.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity is one of the experimental models most commonly used to study the pathogenesis of Parkinson's disease (PD). Although the biochemical mechanisms underlying the cell death induced by MPTP remain to be clarified, it has been found that the mitochondrial apoptotic signaling pathway plays an important role in the neurotoxicity of MPTP. Nucling is a novel type of apoptosis-associated molecule, essential for cytochrome c, apoptosis protease activating factor 1 (Apaf-1), pro-caspase-9 apoptosome induction and caspase-9 activation following pro-apoptotic stress. Here we found that Nucling-deficient mice treated with MPTP did not exhibit locomotor dysfunction in an open-field test. The substantia nigra dopaminergic neurons of Nucling-deficient mice were resistant to the damaging effects of the neurotoxin MPTP. Up-regulated expression of apoptosome was attenuated in Nucling-deficient mice treated with MPTP. These results indicate an important role for Nucling in MPTP-induced neuronal degeneration and suggest that the suppression of Nucling would be of therapeutic benefit for the treatment of neurodegeneration in PD.  相似文献   

16.
Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co-culture, large numbers of tyrosine hydroxylase (TH)-immunoreactive, catecholaminergic cells could be found underneath individual striatal slices. Cell counting revealed that up to 25.3% (average 16.1%) of the total number of cells in these areas were TH-positive, contrasting a few TH-positive cells (<1%) in non-induced areas. The presence of dopamine in the conditioned culture medium was confirmed by HPLC analysis. Interestingly, not all striatal slice cultures induced TH-expression in underlying hNS1 cells. Common to TH-inductive cultures was, however, the presence of degenerating, necrotic areas, suggesting that factors released during striatal degeneration were responsible for the dopaminergic induction of the hNS1 cells. Ongoing experiments aim to identify such factors by comparing protein profiles of media conditioned by degenerating (necrotic) versus healthy striatal slice cultures.  相似文献   

17.
Mammalian homologues of the Drosophila canonical transient receptor potential (TRP) proteins have been implicated to function as plasma membrane Ca(2+) channels. This study examined the role of TRPC1 in human neuroblastoma (SH-SY5Y) cells. SH-SY5Y cells treated with an exogenous neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+)) significantly decreased TRPC1 protein levels. Confocal microscopy on SH-SY5Y cells treatment with MPP(+) showed decreased plasma membrane staining of TRPC1. Importantly, overexpression of TRPC1 reduced neurotoxicity induced by MPP(+). MPP(+)-induced alpha-synuclein expression was also suppressed by TRPC1 overexpression. Protection of SH-SY5Y cells against MPP(+) was significantly decreased upon the overexpression of antisense TRPC1 cDNA construct or the addition of a nonspecific transient receptor potential channel blocker lanthanum. Activation of TRPC1 by thapsigargin or carbachol decreased MPP(+) neurotoxicity, which was partially dependent on external Ca(2+). Staining of SH-SY5Y cells with an apoptotic marker (YO-PRO-1) showed that TRPC1 protects SH-SY5Y neuronal cells against apoptosis. Further, TRPC1 overexpression inhibited cytochrome c release and decreased Bax and Apaf-1 protein levels. Interpretation of the above data suggests that reduction in the cell surface expression of TRPC1 following MPP(+) treatment may be involved in dopaminergic neurodegeneration. Furthermore, TRPC1 may inhibit degenerative apoptotic signaling to provide neuroprotection against Parkinson's disease-inducing agents.  相似文献   

18.
通过测定环境毒素1-甲基-4-苯基-吡啶盐(MPP )作用于多巴胺能细胞系MES23.5后细胞存活率的变化及细胞线粒体膜电位(△ψM)、活性氧(ROS)、羟自由基、超氧化物岐化酶(SOD)的变化,发现MPP^ 作用于多巴胺能细胞系MES23.5,可导致细胞存活率显著性减少,浓度达到200mol/L以上后,细胞存活率的下降呈时间与MPP^ 浓度依赖;以200μmol/L MPP^ 作用细胞6∽48h后,△ψM逐渐下降、ROS、羟自由基逐渐增加,48h后SOD开始显著性减少。结果表明早期线粒体能量代谢障碍和膜电位变化导致ROS(尤其是羟自由基)含量增加是MPP^ 导致多巴胺能细胞氧化应激的原因,而细胞内自由基的清除机制受损,则最终导致细胞变性死亡。  相似文献   

19.
Oxidative stress is believed to contribute to the pathophysiology of Parkinson's disease, in which nigrostriatal dopaminergic (DA) neurons undergo degeneration. Identification of endogenous molecules that contribute to generation of oxidative stress and vulnerability of these cells is critical in understanding the etiology of this disease. Exposure to tetrahydrobiopterin (BH4), the obligatory cofactor for DA synthesis, was observed previously to cause oxidative damage in DA cells. To demonstrate the physiological relevance of this observation, we investigated whether an overproduction of BH4 and DA might actually occur in vivo, and, if it did, whether this might lead to oxidative damage to the nigrostriatal system. Immobilization stress (IMO) elevated BH4 and DA and their synthesizing enzymes, tyrosine hydroxylase and GTP cyclohydrolase I. This was accompanied by elevation of lipid peroxidation and protein-bound quinone, and activities of antioxidant enzymes. These increases in the indices of oxidative stress appeared to be due to increased BH4 synthesis because they were abolished following administration of the BH4 synthesis inhibitor, 2,4-diamino-6-hydroxy-pyrimidine. IMO also caused accumulation of neuromelanin and degeneration of the nigrostriatal system. These results demonstrate that a severe stress can increase BH4 and DA and cause oxidative damages to the DA neurons in vivo, suggesting relevance to Parkinson's disease.  相似文献   

20.
To investigate the effects of dopamine (DA) on the release of glutathione (GSH) from astrocytes, we used astroglia-rich primary cultures from the brains of newborn rats. In the absence of DA, GSH accumulated in the medium of these cultures with a constant rate. In contrast, during incubation of the cells with 50 micro m DA extracellular GSH was not detectable anymore. This disappearance of extracellular GSH was prevented by superoxide dismutase, indicating that DA does not affect GSH release but rather reacts with the released GSH in a superoxide-dependent reaction. Incubation of astroglial cultures with 0.5 and 1 mm DA established almost constant extracellular concentrations of H2O2 of 5 microm and 15 microm, respectively. Under these conditions astroglial cultures release glutathione disulphide (GSSG). This GSSG export was blocked by catalase and by MK571, an inhibitor of the multidrug resistance protein 1. The effects of DA on the extracellular accumulations of GSH and GSSG were not modulated by inhibitors of DA receptors, DA transport, and monoamine oxidases. The other catecholamines adrenaline and noradrenaline showed similar effects on the accumulation of GSH and GSSG in the medium compared with those obtained for DA. In conclusion, the data presented demonstrate that DA affects astroglial GSH metabolism by two mechanisms: (i) directly by chemical reaction with extracellular GSH, and (ii) indirectly by generation of hydrogen peroxide that leads to the efflux of GSSG from astroglial cells. These observations are discussed in the context of the brain's GSH metabolism in Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号