首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have found that mutations that lead to loss of rolled/MAP kinase function result in a reduced mitotic index in the larval central nervous system, consistent with an interphase block to cell cycle progression, associated with a low frequency of cells showing chromosome over-condensation in mitosis and abnormal anaphase figures. In contrast to wild-type tissue, such rolled mutants do not show a significant increase in accumulation of mitotic cells when treated with colchicine. We have studied double mutant combinations between mutations affecting the activity of rolled/MAP kinase and several genes that are essential to the establishment of a bipolar spindle during progression through mitosis, and find no interactions with mutations in polo, mgr,or aurora. However, partial loss-of-function mutations in rolled enhance the abnormal spindle (asp) phenotype, whereas gain-of function mutations in rolled or in the gene encoding its activating kinase Dsor1, act as suppressors. We discuss these findings in relation to the proposed role of MAP kinase in mediating the spindle integrity checkpoint. Received: 27 October 1997 / Accepted: 18 December 1997  相似文献   

2.
The effects of the spindle toxins colchicine, oryzalin and amiprophos-methyl (APM) on metaphase arrest, chromosome scattering, and on the induction and yield of micronuclei were compared in suspension cells ofNicotiana plumbaginifolia (kanamycin-resistant “Doba” line). The inhibition of spindle formation is stronger with oryzalin and APM than with colchicine, which resulted in a more efficient accumulation of meta-phases with well-scattered chromosomes, allowing the isolation of single chromosomes. Further, APM and oryzalin treatments resulted in a higher frequency of micro-nucleated cells and greater yield of micronuclei than after colchicine treatment. The different actions of the chemicals on the functioning of the spindle, development of nuclear membranes around the chromosomes, formation of micronuclei and fusion of micronuclei, resulting in restitution nuclei, are discussed.  相似文献   

3.
The paper describes the phenomenon of disorganization of completely formed subcellular structures: division spindle, phragmoplast and chromosome telophase groups. These structures disintegrate into their elements (cytoskeletal fibers, chromosomes) that transform into chaotic system. Chaotization of cytoskeleton structures such as prophase spindle in mitosis or perinuclear ring in meiosis is a normal step of wild type plant cell division. Disintegration of division spindle and phragmoplast presumably indicate the abnormality of temporal regulation of cytoskeleton cycle during meiosis. Disintegration of telophase chromosome groups and the migration of the chromosomes backward to the equatorial area might mean the abnormal start of some prometaphase mechanisms, in particular, chromokinesins activation.  相似文献   

4.
The effectiveness of colchicine in destroying or preventing the development of the spindle is determined by the concentration of the colchicine and the degree of development of the spindle at the time of exposure; the greater the concentration of colchicine, the greater will be its effectiveness in destroying the spindle or interfering with its development; the more completely the spindle is developed at the time of exposure to colchicine, the greater is the concentration of colchicine required to destroy it or prevent its further development.The series of changes in chromosome orientation that take place during the course of colchicine action, namely, approximation of centromeres, formation of “stars,” the breaking up of one “star” into several, and complete chromosome disorientation, represent successive stages in the destruction of the spindle.Destruction of the completely formed spindle is typically accompanied by the accumulation of the spindle material outside the diminishing spindle in a hyaline globule. Similarly, interference of colchicine with spindle development leads to the accumulation of the presumptive spindle material, i.e., the karyolymph, in one or more hyaline globules. It is suggested that colchicine does not destroy the spindle material but merely alters its molecular orientation, so that it comes to comprise a spherical mass with no mitotic function.Strong concentrations of colchicine cause middle and late prophase nuclei to revert to early prophase. Somewhat lower concentrations applied to late prophase nuclei occasionally delay the breakdown of the nuclear membrane without altering the rate of chromosome contraction. In greatly retarded late prophase nuclei the chromosomes lose their intranuclear orientation, which lends support to the concept that the centromeres normally maintain a fixed position within the nucleus.  相似文献   

5.
Summary Exposure of germlings of Allomyces neo-moniliformis to colchicine for 0 to 5 min after zoospore encystment was found to block 30% of germlings derived from flagellated zoospores and 55% of germlings derived from deflagellated zoospores in C-metaphase configurations at the first mitotic division. The zoospore lacks a pool of colchicine binding protein, and protein synthesis is absent during the time when colchicine first becomes effective in inducing C-metaphase. From these observations it is concluded that the microtubule subunit protein of the spindle apparatus of the first mitotic division to a large extent is derived from the depolymerization of the cytoplasmic microtubules of the zoospore. GTP, Mg2+, and ATP were observed to be antagonistic to the action of colchicine in vivo. It is suggested that these compounds may compete with colchicine for binding to the subunit protein in vivo. Germlings derived from flagellated zoospores are appreciably less subject to the action of colchicine in the presence of the antagonistic compounds than are germlings derived from deflagellated zoospores. This differential sensitivity to colchicine is interpreted as reflecting a difference in the quantity of microtubule subunit protein present at the time of exposure to colchicine.  相似文献   

6.
Zusammenfassung Vergleichende Untersuchungen über die Wirkung eines Carbamatherbizids und von Colchicin auf die Mitose von teilungsaktiven Wurzelspitzenzellen von Hordeum und Allium ergaben, daß die großen Unterschiede in der Empfindlichkeit zwischen Hordeum und Allium gegen das Carbamat in bezug auf das Spindelgift Colchicin nicht vorliegen, im Gegenteil, Hordeum ist weniger empfindlich als Allium.Colchicin wirkt vorzugsweise auf die Spindel und führt über C-Mitosen zur Polyploidie. Das Carbamat übt neben dem Einfluß auf die Spindel einen starken Effekt auf die Chromosomen aus, indem es zu Verklebungen und Zusammenballungen führt.
Investigations on the effects of a carbamate herbicide and of colchicine on mitosis of Allium cepa and Hordeum vulgare
Summary The marked differences in sensitivity of mitotically active root tip cells of Hordeum and Allium observed in response to a carbamate herbicide are not found in response to treatment with the spindle poison colchicine. Hordeum was less sensitive than Allium. Colchicine inhibited the spindle and caused c-mitoses and polyploidy. The carbamate herbicide inhibited the spindle and strongly affected the chromosomes; arrest of mitosis was primarily caused by stickiness and pycnosis of the chromosomes, spindle inhibition was of secondary importance.
  相似文献   

7.
中国水仙的核型分析和小孢子发生中的细胞学研究   总被引:6,自引:0,他引:6  
中国水仙(Narcissustazettavar.chinensis)只开花不结实,以鳞茎营养繁殖。对中国水仙的染色体倍性有不同的报道。对中国水仙的核型分析,支持它是三倍体的观点,但其核型也显示出了异源三倍体的倾向。在小孢子母细胞减数分裂过程中,染色体的异常行为多表现为:中期出现单个染色体游离在纺锤体外面、在后期出现的染色体桥和落后染色体、在末期出现的单个染色体游离在细胞核外形成微核的现象。这些异常现象引起小孢子的败育,也支持中国水仙为三倍体植物的观点。  相似文献   

8.
Uptake of isolated plant chromosomes by plant protoplasts   总被引:1,自引:0,他引:1  
L. Szabados  Gy. Hadlaczky  D. Dudits 《Planta》1981,151(2):141-145
For mass isolation of plant metaphase chromosomes, cultured cells of wheat (Triticum monococcum) and parsley (Petroselinum hortense) were synchronized by hydroxyurea and colchicine treatment. This synchronization procedure resulted in high mitotic synchrony, especially in suspension cultures of parsley in which 80% of the cells were found to be at the metaphase stage. Mitotic protoplasts isolated from these synchronized cell cultures served as a source for isolation of chromosomes. The described isolation and purification method yielded relatively pure chromosome suspension. The uptake of the isolated plant chromosomes into recipient wheat, parsley, and maize protoplasts was induced by polyethylene-glycol treatment. Cytological studies provided evidences for uptake of plant chromosomes into plant protoplasts.Abbreviations PEG polyethylene glycol - HU hydroxyruea - C colchicine - HUC hydroxyurea and colchicine - CIM chromosome isolation medium - TCM Tris chromosome medium  相似文献   

9.
In plant cells Golgi apparatus organization, maintenance and distribution differ from that in mammalian cells and the mechanisms for this are not clearly understood. Here we investigate the role of microtubules in the positioning and arrangement of Golgi apparatus in the root cells of Triticum aestivum L. by using dual immunofluorescent labeling and laser confocal microscopy to localize both throughout the cell cycle. We observed that Golgi stacks (i) in interphase cells predominantly occupied the perinuclear region, (ii) during mitosis they redistributed to the spindle periphery and/or areas above spindle poles, and (iii) in telophase accumulated around the phragmoplast and the chromosomes/nuclei of daughter cells. Inhibition of microtubule assembly by colchicine resulted in aggregation of Golgi in the cortical cytoplasm of interphase cells and accumulation around the chromosomes in C-mitotic cells, in stark contrast with the distribution in untreated cells. Electron microscopy revealed that in colchicine treated cells many Golgi units became disorganized, yet others were abnormally enlarged. Overall, our results indicate that in plant cells microtubules play a key role in restricting the position and maintaining the arrangement and structural integrity of the Golgi apparatus.  相似文献   

10.
Summary Morphogenesis of mitochondria in male germ cells in cultivated cytocysts begins in early prophase I at which time mitochondria thicken and become ordered along the spindle apparatus during meiosis. At the end of the second meiotic division they aggregate to form the Nebenkern.In the presence of colchicine or cytochalasin B mitochondria are able to begin differentiation, although the correct course of meiosis is not guaranteed. In medium supplemented with colchicine they undergo normal thickening but do not aggregate, in a pattern known from untreated cultures. This may indicate that microtubules are involved in the aggregation process of mitochondria as colchicine is known to inhibit microtubule formation. Moreover, in cell cultures treated with cytochalasin B mitochondrial aggregation does occur; it is concluded that microfilaments, which are sensitive to cytochalasin B, do not play a detectable role in the aggregation of mitochondria.  相似文献   

11.
We have analyzed the effect of colchicine and tubulin dimer-colchicine complex (T-C) on microtubule assembly in mitotic spindles. Cold- and calcium-labile mitotic spindles were isolated from embryos of the sea urchin Lytechinus variegatus employing EGTA/glycerol stabilization buffers. Polarization microscopy and measurements of spindle birefringent retardation (BR) were used to record the kinetics of microtubule assembly-disassembly in single spindles. When isolated spindles were perfused out of glycerol stabilizing buffer into a standard in vitro microtubule reassembly buffer (0.1 M Pipes, pH 6.8, 1 mM EGTA, 0.5 mM MgCl2, and 0.5 mM GTP) lacking glycerol, spindle BR decreased with a half-time of 120 s. Colchicine at 1 mM in this buffer had no effect on the rate of spindle microtubule disassembly. Inclusion of 20 microM tubulin or microtubule protein, purified from porcine brain, in this buffer resulted in an augmentation of spindle BR. Interestingly, in the presence of 20 microM T-C, spindle BR did not increase, but was reversibly stabilized; subsequent perfusion with reassembly buffer without T-C resulted in depolymerization. This behavior is striking in contrast to the rapid depolymerization of spindle microtubules induced by colchicine and T-C in vivo. These results support the current view that colchicine does not directly promote microtubule depolymerization. Rather, it is T-C complex that alters microtubule assembly, by reversibly binding to microtubules and inhibiting elongation. In vivo, colchicine can induce depolymerization of nonkinetochore spindle microtubules within 20 s. In vitro, colchicine blocks further microtubule assembly, but does not induce rapid disassembly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Chromosomal behaviour and spindle morphology were studied in microsporogenesis of two kinds of diploid potato clones: with normal meiosis, and with "fused spindles" (fs) occurring during the second meiotic division from prometaphase II (proMII) to telophase II (TII). For the first time, morphological effect of fs was found at the late proMII stage to be expressed as two interrelated processes: 1) abnormal chromosome movement, which resulted in joining two groups of chromosomes in the central zone of meiocytes, and 2) abnormal formation of two spindles in the direction to two division poles instead of four poles that actually led to the formation of a united bipolar spindle. Thus, it is not the fusion of two parallel spindles but the formation of united bipolar spindle that constitutes fs abnormality, while the parallel co-orientation of two spatially separated meiotic spindles is a norm in diploid potato. These primary abnormalities detected at proMII resulted in abnormalities at its subsequent meiotic stages: formation of fused spindle and united metaphase plate at MII, bipolar chromosome segration at anaphase II, formation of two telophase nuclei at TII and dyads at the tetrad stage. The results obtained evidence the polar division disturbance in diploid potato clones with fs abnormality.  相似文献   

13.
14.
R. D. MacLeod 《Planta》1966,71(3):257-267
Summary Roots of Vicia faba were treated with colchicine (0.025%), or IAA (4.7×10-6 M), or both, for 3 hours and fixed at various intervals over the following 11 days. The axis of spindle orientation and the distribution of mitotic figures, lateral root primordia and xylem vessel elements was examined in the apical 10 mm of median longitudinal sections of these roots.No effect of IAA was found on the orientation of the spindle. However, evidence was obtained indicating that the systems controlling the polarity of cell division and cell expansion differ in some way.The number of lateral root primordia formed was greater in roots treated with IAA or colchicine than in control roots. These primordia were always initiated adjacent to a xylem vessel. Thus, no primordium was closer to the apex than the most apical xylem vessel, suggesting that an endogenous factor involved in primordia initiation is transported in the xylem. The primordia which develop after colchicine treatment grow out as lateral roots; this is in contrast with those which form after IAA treatment and which do not undergo elongation. These results, which it must be emphasized apply only to the apical 1 cm of treated roots, indicate that lateral root primordia become sensitive to IAA at a certain stage in their development. Exogenous IAA acts as an inhibitor.The new meristem, which forms in the primary root apex after colchicine treatment, contains both diploid and polyploid cells, i.e. it was formed from cells that were unaffected and from cells that were affected by colchicine. Following colchicine treatment the size of the meristem shrinks and this can be prevented by treatment with IAA. This and other evidence presented here, suggests that IAA is a factor involved in the control of the size of the apical meristem in normal roots.  相似文献   

15.
Rye anthers were cultured in medium with colchicine for periods of 12–24 h. Unaffected PMCs showed normal meiotic pairing in the same anthers in which other PMCs showed several degrees of asynapsis (or desynapsis), c-meiosis or anaphase irregularities. Pairing was affected only in cells which were at mid zygotene at the time of treatment initiation. Chiasma terminalization and release was possible in the absence of a functional spindle. Possibly, spindle function is more sensitive to colchicine than pairing. Variation within anthers can be adscribed to gradients in stage and development. The possibility of differences in penetration of colchicine must be recognized.  相似文献   

16.
F-actin and microtubule co-distribution and interaction were studied during anaphase-telophase. Rapid and drastic changes in the cytoskeleton during these particular stages were studied in isolated plant endosperm cells of the blood lily. These wall-free cells can be considered as natural dividing protoplasts. As identified previously, an F-actin cytoskeletal network characterized the plant cortex and formed an elastic cage around the spindle, remaining throughout interphase, mitosis and cytokinesis. Actin was specifically labeled by fluorescent phalloidin and/or monoclonal antibodies. Gold-labelled secondary antibodies were used for ultrastructural observations and silver-enhancement was applied for video-enhanced microscopy. Microtubule and microfilament dynamics and interaction were studied using drug antagonists to actin (cytochalasins B, D) and to tubulin (colchicine). This permitted precise correlations to be made between chromosome movement inhibition and alteration in the actin/tubulin cytoskeleton. During anaphase chromosome migration, the cortical actin network was stretched along the microtubular spindle, while it remained homogeneous when anaphase was inhibited by colchicine. Cytochalasins did not inhibit chromosome movement but altered actin distribution. A new population of actin filaments appeared at the equator in late anaphase before the microtubular phragmoplast was formed and contributed to cell plate formation. Our conclusion is that F-actin-microtubule interaction may contribute to the regulatory mechanism of plant cytokinesis.  相似文献   

17.
SYNOPSIS Stentor coeruleus, induced to shed their ciliary membranellar bands, regenerate these and associated oral structures within a few hours after treatment. In cells placed in media containing optimal concentrations of mitotic spindle inhibitors, regeneration of the ingestive organelles is reversibly inhibited. Inhibitory effects of Colcemid, podophyllotoxin, and cold temperature reported here are compared with previous results using colchicine, griseofulvin and isopropyl-n-phenyl carbamate on regenerating oral membranellar cilia and cell growth.  相似文献   

18.
We have found that mutations that lead to loss of rolled/MAP kinase function result in a reduced mitotic index in the larval central nervous system, consistent with an interphase block to cell cycle progression, associated with a low frequency of cells showing chromosome over-condensation in mitosis and abnormal anaphase figures. In contrast to wild-type tissue, such rolled mutants do not show a significant increase in accumulation of mitotic cells when treated with colchicine. We have studied double mutant combinations between mutations affecting the activity of rolled/MAP kinase and several genes that are essential to the establishment of a bipolar spindle during progression through mitosis, and find no interactions with mutations in polo, mgr,or aurora. However, partial loss-of-function mutations in rolled enhance the abnormal spindle (asp) phenotype, whereas gain-of function mutations in rolled or in the gene encoding its activating kinase Dsor1, act as suppressors. We discuss these findings in relation to the proposed role of MAP kinase in mediating the spindle integrity checkpoint.  相似文献   

19.
Gametocytes of Plasmodium yoelii were incubated with colchicine, vinblastine sulphate and cytochalasin B and then induced to undergo gametogenesis. All the drugs inhibited gamete formation in a dose and time dependent manner. Electron microscopy revealed that colchicine and vinblastine sulphate inhibited the polymerisation of cytoplasmic- axonemal- and intranuclear mitotic- microtubules. Cytochalasin B did not inhibit microtubule assembly but blocked spindle pole separation and axoneme distribution into the microgamete. All drugs prevented escape of the gametocyte from the erythrocyte. The mechanism of mitotie spindle action is discussed.  相似文献   

20.
Plating rice anthers on a semisolid induction medium containing 250 or 500 mg/l colchicine for 24 or 48 h-incubations followed by transfer to colchicine-free medium and standard anther culture procedures resulted in overall 1.5- to 2.5- fold increases in doubled haploid green plant productions compared to control anther cultures. The addition of colchicine had no detrimental effects on the different anther culture efficiency parameters, but in some treatments led to significant enhancement of anther callusing frequency or callus green plant regenerating ability. The most efficient treatment raised doubled haploid plant recovery from 31% to 65.5%. These results suggest that post-plating colchicine treatment of anthers, since it was found to improve both anther culture efficiency and doubled haploid plant recovery frequency, could be integrated into rice doubled haploid plant production programmes.Abbreviations DH doubled haploid - NAA naphthalenacetic acid - PAS periodic acid Schiff  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号