首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of nitrogen source on the free and bound amino acids of mycelium of Phymatotrichum omnivorum (Shear) Dugg was investigated. The largest free amino acid pool was present in the natural medium and the smallest in the synthetic medium. Phymatotrichum omnivorum was able to utilize different nitrogen sources with the best growth occurring with NH4NO3. The ratio of glycine to alanine and aspartic to glutamic was around 0.25 in the free amino acid pool and around 1 in the bound amino acid pool. The free pool of glutamic acid ranged from 5.6 % to 27.2 % depending upon the nitrogen source in the media. The free pool of alanine ranged from 35.7 % to 17.2 % in relation to the nitrogen source. Most other amino acid ratios did not vary significantly between the free amino acids and the bound amino acids.  相似文献   

2.
The leaf-litter fungus Coprinus cinereus maintains a pool of free amino acid in its mycelium. When the organism is grown under conditions of high nitrogen availability with 13.2 mmol.L-1 L-asparagine as the nitrogen source, the primary constituents of this pool are glutamine, alanine, and glutamic acid. Together these 3 amino acids comprise approximately 70% of the pool. Nitrogen deprivation reduces the size of the free amino acid pool by 75%, and neither a high concentration of ammonium nor a protein nitrogen source support a similar pool size as L-asparagine. Nitrogen deprivation also reduces the concentration of glutamine to the pool while increasing glutamate. Concomitant with this shift is a marked increase in mycelial ammonium.  相似文献   

3.
The work was aimed at studying the effect of yeast autolysate on the content and subcellular distribution of free amino acids in yeast cells. The overall pool of free amino acids decreased 1.5-2 times when mineral nitrogen in the growth medium was substituted either completely or partly by yeast autolysate. As was shown using the technique of differential extraction, the vacuolar pool of the cell is mainly responsible for the decrease in the content of free amino acids.  相似文献   

4.
Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae   总被引:27,自引:19,他引:8  
Yoch, D. C. (South Dakota State University, Brookings), and R. M. Pengra. Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae. J. Bacteriol. 92:618-622. 1966.-The effect of exogenous amino acids and the free amino acid pool on the synthesis of the nitrogenase system of Klebsiella pneumoniae M5al (formerly Aerobacter aerogenes M5al) was investigated. When an actively N(2)-fixing culture was used to inoculate a medium containing a limiting concentration of NH(4) (+), an induction lag period was observed. When either a single amino acid or a mixture of amino acids was substituted at the same nitrogen concentration, growth was uninterrupted by the induction period. It appears that a step or steps in the formation of the nitrogenase system are repressed by NH(4) (+) and are not affected by amino acid N. The amino acids, far from repressing formation of nitrogenase as does NH(4) (+), actually stimulate its formation. It appears that both free and amino nitrogen are used simultaneously. The amino acids that served concomitantly with N(2) as a source of nitrogen were: aspartic acid, serine, threonine, leucine, and histidine. Of these amino acids, it was shown that aspartic acid is readily taken up by the cells. Of the amino acids not serving as an immediate nitrogen source, isoleucine is not taken up by the cells. The free amino acid pool of the cells was measured at the onset and termination of the induction period. Ninhydrin-positive material in the amino acid pool was depleted by 35% during the induction period.  相似文献   

5.
Yeast cells grown under optimal and suboptimal concentrations of biotin were analyzed for the amino acid content of their soluble pool and cellular protein. Optimally grown yeast cells exhibited a maximum amino acid content after 18 hr of growth. Biotin-deficient cells were depleted of all amino acids at 26 and 43 hr, with alanine, arginine, aspartate, cysteine, glutamate, isoleucine, leucine, lysine, methionine, serine, threonine, and valine being present in less than half the concentration observed in biotin-optimal cells. At early time intervals, the amino acid pool of biotin-deficient yeast contained lower concentrations of all amino acids except alanine. After more prolonged incubation, several amino acids accumulated in the pool of biotin-deficient yeast, but citrulline and ornithine accumulated to appreciable levels. The addition of aspartate to the growth medium resulted in a decrease in the amino acid content of biotin-optimal cells but caused a marked increase in the concentration of amino acids in biotin-deficient cells. The pools of biotin-deficient yeast grown in the presence of aspartate displayed a marked reduction in every amino acid with the exception of aspartate itself. These data provide evidence that the amino acid content of yeast cells and their free amino acid pools are markedly affected by biotin deficiency as well as by supplementation with aspartate, indicating that aspartate plays a major role in the nitrogen economy of yeast under both normal as well as abnormal nutritional conditions.  相似文献   

6.
Although wheat mashes contain only growth-limiting amounts of free amino nitrogen, fermentations by active dry yeast (Saccharomyces cerevisiae) were completed (all fermentable sugars consumed) in 8 days at 20 degrees C even when the mash contained 35 g of dissolved solids per 100 ml. Supplementing wheat mashes with yeast extract, Casamino Acids, or a single amino acid such as glutamic acid stimulated growth of the yeast and reduced the fermentation time. With 0.9% yeast extract as the supplement, the fermentation time was reduced from 8 to 3 days, and a final ethanol yield of 17.1% (vol/vol) was achieved. Free amino nitrogen derived in situ through the hydrolysis of wheat proteins by a protease could substitute for the exogenous nitrogen source. Studies indicated, however, that exogenously added glycine (although readily taken up by the yeast) reduced the cell yield and prolonged the fermentation time. The results suggested that there are qualitative differences among amino acids with regard to their suitability to serve as nitrogen sources for the growth of yeast. The complete utilization of carbohydrates in wheat mashes containing very little free amino nitrogen presumably resulted because they had the "right" kind of amino acids.  相似文献   

7.
Although wheat mashes contain only growth-limiting amounts of free amino nitrogen, fermentations by active dry yeast (Saccharomyces cerevisiae) were completed (all fermentable sugars consumed) in 8 days at 20 degrees C even when the mash contained 35 g of dissolved solids per 100 ml. Supplementing wheat mashes with yeast extract, Casamino Acids, or a single amino acid such as glutamic acid stimulated growth of the yeast and reduced the fermentation time. With 0.9% yeast extract as the supplement, the fermentation time was reduced from 8 to 3 days, and a final ethanol yield of 17.1% (vol/vol) was achieved. Free amino nitrogen derived in situ through the hydrolysis of wheat proteins by a protease could substitute for the exogenous nitrogen source. Studies indicated, however, that exogenously added glycine (although readily taken up by the yeast) reduced the cell yield and prolonged the fermentation time. The results suggested that there are qualitative differences among amino acids with regard to their suitability to serve as nitrogen sources for the growth of yeast. The complete utilization of carbohydrates in wheat mashes containing very little free amino nitrogen presumably resulted because they had the "right" kind of amino acids.  相似文献   

8.
The amino acid pool of yeast cells, Saccharomyces cerevisiae, incubated with galactose remains at a constant level for 100 minutes. This is 30 minutes beyond the time at which the oxidative phase of the induced-enzyme formation begins. Washed yeast cells, the pools of which have been depleted 60 per cent by incubation with glucose, do not replenish their pools as do washed cells incubated without a substrate. These facts indicate that the induced enzymes are formed at least partially from pool-replenishing amino acids. The time of onset of pool depletion is the time at which the aerobic fermentation phase of induced-enzyme formation begins for cells incubated with galactose. With 0.1 per cent galactose the respiratory phase begins at 100 minutes but no aerobic fermentation nor pool depletion occurs. The rates of respiration and aerobic fermentation are constant for four glucose concentrations from 0.1 to 1.0 per cent. The amount of aerobicfermentation is proportional to the initial concentration of glucose. Amino acid pool depletion occurs for all concentrations but depletion ceases and is followed by pool replenishment after aerobic fermentation is complete. Ultraviolet radiations, which delay the appearance of the respiratory phase of induced-enzyme formation, completely eliminate both the appearance of aerobic fermentation and pool depletion. The results indicate an intimate association between aerobic fermentation and amino acid pool depletion.  相似文献   

9.
In nitrogen-limited media, growth and fatty acid formation by the oleaginous yeast Rhodotorula glutinis, i.e., yield and fatty acid cell content, have been characterized regarding carbon and nitrogen availabilities. It was shown that the formation of fatty acid free biomass was limited by nitrogen availability, whereas the fatty acid production was directly dependent on the consumed C/N ratio. According to these observations, the fraction of substrate consumed for fatty acid synthesis was estimated by using a simple method based on the actual yields, i.e., the mass of carbon source strictly converted into fatty acids and fatty acid free biomass. From these results, relationships were established allowing to predict in a simple and performing manner the maximal attainable fatty acid cell content and yield from the available carbon and nitrogen. These relationships were validated by using experimental data obtained by various authors with different yeast strains, and the proposed method was compared to the energetic and mass balance method previously described.  相似文献   

10.
Yeast tRNA nucleotidyl transferase rapidly inactivates (half life c. 2 hr) upon nitrogen starvation of exponentially growing cells. The inactivation does not occur when glucose together with the nitrogen source is removed or when glucose is replaced by ethanol. The transferase activity reappears shortly after replenishment of the nitrogen source and this appearance of the enzymatic activity is blocked by cycloheximide, indicating the need for protein biosynthesis during the process. The nucleotidyl transferase activity is also very low in stationary phase yeast cells. A ten fold decrease in the transferase activity is not paralleled by loss of the integrity of the 3' end of the tRNA chains. It seems that there is a large excess of enzymatic activity over that needed to keep the tRNA chains complete. The observed lack of the 3' end of tRNAs from late stationary phase yeast cannot be accounted for by the observed drop in transferase activity in these cells.  相似文献   

11.
以灵芝为材料,在前期研究基础上,以不同酵母粉作为氮源,研究复合有机氮源对灵芝三萜液态深层发酵的影响。首先,由单因素实验考察3种不同的酵母粉对灵芝菌丝体合成灵芝三萜的影响,确定酵母粉的最适宜浓度范围。在此基础上,根据中心组合实验设计,对3种酵母粉分别采用2种复合和3种复合的方式,优化复合有机氮源的最佳组合配比。结果表明:当基础培养基中添加6.6g/L的酵母粉N-1与6.6g/L的酵母粉N-2时,灵芝三萜产量可达0.478g/L(理论产量为0.485g/L),比添加单一酵母粉N-1、N-2、N-3分别提高了21%、139%、103%,其氮源用量为两种组合时最低。当基础培养基中酵母粉N-1、N-2与N-3添加量分别为5.07g/L、3.78g/L、7.63g/L时,灵芝三萜产量达0.514g/L(理论产量为0.510g/L),比单因素对照组分别提高了30%、157%和74%。本研究优化的复合氮源添加方式可明显提高灵芝菌丝体液态深层发酵生产灵芝三萜的产量,为其规模化液态深层发酵的生产提供科学数据。  相似文献   

12.
Uptake and intracellular transformation of pyrimidines supplying cells of the yeast Rhodotorula glutinis with nitrogen have been studied. The amine nitrogen of cytosine was found to be the easiest to utilize. The presence in the medium of inorganic ammonia along with cytosine had a slight effect on cytosine deaminase (EC 3.5.4.1) activity. The uracil produced entered into the nutrient medium with no fission break of the pyridmidine ring. In the absence of any other source of nitrogen, the cells of the yeast R. glutinis utilized nitrogen of the pyrimidine ring of oxypyrimidines. Catabolism of uracil followed the reductive pattern, with release of carbon dioxide; this was accompanied by synthesis of the key enzyme of pyrimidine catabolism, dihydrouracil dehydrogenase (EC 1.3.1.1), whose activity rose 10-fold. With thymidne as the sole source of nitrogen, the lag-phase growth of the yeast cells was maximum. Catabolism of the pyrimidine ring of thymine was possibly preceded by its transformation into uracil. With no source of nitrogen easily utilized, the uridine 5'-monophosphate content in the generally acid-soluble pool rose. Our discussion of the regulation of catabolism of exogenous pyrimidine bases by the yeast R. glutinis takes into account the fact that transformations of pyrimidine bases are determined by how easily the cells can use a particular base as a source of nitrogen.  相似文献   

13.
Use of an ion-exchange resin assay has shown that leucine is bound to a component of a dialyzed extract of yeast. Leucine binding may be related to in vivo uptake of the amino acid. A yeast strain with a 30-fold lower affinity for leucine uptake in vivo has a parallel reduction in affinity for in vitro leucine binding; the rate of leucine uptake in wild-type yeast can be increased four- to fivefold by growth on leucine as a sole nitrogen source. Under these conditions, the specific activity of the leucine-binding component also increases over threefold. Regulation of leucine uptake was studied by using wild-type strain 60615 and a mutant 60615/fl(2) with a constitutively elevated leucine uptake system. Leucine pool formation in the mutant was accompanied by an overshoot, leading to a loss of leucine from the pool. The phenomenon could be observed in the wild type under certain conditions. The mechanism of this process was examined. The leucine uptake system was found to be stable in the absence of protein synthesis. The rate of leucine uptake increased on reduction of the pool of amino acids, and in strain 60615/fl(2) the ability to overshoot was rapidly recovered on depletion of the leucine pool. The results suggest a control of leucine uptake by feedback inhibition, in which leucine or other amino acids, e.g., isoleucine, inhibit leucine uptake. The results do not exclude control by a rapidly activated-inactivated system.  相似文献   

14.
When washed yeast cells grown under appropriate conditions were suspended in glucose solution there was a sudden release of α-amino nitrogen into the medium. This released material was of low molecular weight, and its composition was closely similar to that of the intracellular free amino acid pool. During the leakage of amino acids, the yeast did not efficiently absorb labeled amino acids added to the test medium, despite the rapid uptake and metabolism of glucose. Uptake of a labeled amino acid and reabsorption of the released α-amino nitrogen occurred almost simultaneously. When these yeast cells were exposed to glucose in the presence of calcium ions, leakage was strongly inhibited. Butanol under the same conditions increased glucose-induced leakage of cell contents. The adenosine triphosphatase activity of intact yeast cells exposed to glucose was greater than that of cells exposed to water. Yeast cells treated with glucose prior to equilibration with sorbose exhibited less ability to retain the sorbose when washed at 0 C than did cells pretreated with water. It was concluded that glucose-induced leakage of amino acids was the result of two factors acting together. These were (i) a change in membrane permeability associated with glucose uptake, and (ii) a temporary shortage of energy for amino acid uptake or retention.  相似文献   

15.
At the excitatory synapse of rat hippocampus the short-term synaptic depression observed during long high-frequency stimulation is associated with slower replenishment of the readily-releasable pool. Given that the replenishment rate is also not [Ca++]o sensitive this puts into question a widely held notion that the vesicles—constrained by the cytoskeleton and rendered free from such constraints by Ca++ entry that renders them more mobile—are important in the replenishment of the readily-releasable pool. This raises a question—Is vesicular replenishment of the readily releasable pool associated with significant movement? To answer this question we evaluated how okadaic acid and staurosporine (compounds known to affect vesicular mobility) influence the replenishment rate. We used patterned stimulation on the Schaffer collateral fiber pathway and recorded the excitatory post-synaptic currents (EPSCs) from rat CA1 neurons, in the absence and presence of these drugs. The parameters of a circuit model with two vesicular pools were estimated by minimizing the squared difference between the ESPC amplitudes and simulated model output. [Ca2+]o did not influence the progressive decrease of the replenishment rate during long, high frequency stimulation. Okadaic acid did not significantly affect any parameters of the vesicular storage and release system, including the replenishment rate. Staurosporine reduced the replenishment coupling, but not the replenishment rate, and this is owing to the fact that it also reduces the ability of the readily releasable pool to contain quanta. Moreover, these compounds were ineffective in influencing how the replenishment rate decreases during long, high frequency stimulation. In conclusion at the excitatory synapses of rat hippocampus the replenishment of the readily releasable pool does not appear to be associated with a significant vesicular movement, and during long high frequency stimulation [Ca++]o does not influence the progressive decrease of vesicular replenishment.  相似文献   

16.
AIMS: The aim of the study was to characterize the effect of various nitrogen sources on Oenococcus oeni growth, carbon source utilization, extracellular protease activity and extracellular proteins. More generally, the goal is to understand how nitrogen-based additives might act to enhance malolactic fermentation in wine. METHODS AND RESULTS: Five yeast extracts were used. As the amino acid and nitrogen analyses revealed, they were similar in global amino acid composition, except for arginine level. Nevertheless the ratio of amino acids between free/bound, and low/high molecular weight fractions were highly different. One of the yeast extracts led to a significant protease activity in the supernatant and to a poor final biomass of the IOB84.13 strain compared to the other ones. For the IOB84.13 strain specifically, arginine addition to the arginine poor yeast extract did not restore growth. 35S-methionine-labelled extracellular proteins were separated by SDS-PAGE. Signals were detected in all media early in the growth phase and were maintained during 48 h of culture. CONCLUSIONS: A significant protease activity was detected for O. oeni supernatants during growth under nitrogen limitation but only for certain nitrogen sources. Moreover, the activity was strain dependent. Peptides (0.5-10 kDa) seemed to be more favourable for growth of wine bacteria than <0.5 kDa nitrogen sources. The extracellular protein signal patterns differed more greatly between the bacterial strains tested than between the nitrogen molecules in the medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study extensively considering the role of the nitrogen source composition and level upon O. oeni growth and metabolism.  相似文献   

17.
Lee K 《Bioresource technology》2005,96(13):1505-1510
The aim of this study was to investigate industrial media for lactic acid fermentation to reduce the cost of nitrogen sources. Corn steep liquor (CSL) was successfully used at 5% (v/v) in batch fermentations. Use of soluble CSL improved the productivity approximately 20% with an advantage of clearer fermentation broth. Yeast extract (YE)-complemented CSL media further increased the productivity. It was found that 3.1 g L(-1) yeast extract and 5% CSL could be an effective substitute for 15 g L(-1) yeast extract in 10% glucose medium. Spent brewery yeast was also used as a sole nitrogen source equivalent to 5% CSL. Lactic acid was recovered by electrodialysis from the cell free broth. Depleted cell free broth supplemented with 5 g L(-1) of yeast extract performed reasonably in batch cultures. Reuse of the fermentation broth may reduce the cost of raw materials as well as minimize the fermentation wastes.  相似文献   

18.
Intracellular concentrations of adenine nucleotides and intermediates of the Embden-Meyerhof pathway and the tricarboxylic acid cycle have been determined during growth and sporulation of Bacillus licheniformis in a variety of different media. The ATP pool was independent of growth rate and nitrogen source, but the use of glucose as a carbon source resulted in a twofold elevation in the ATP pool during exponential growth. The intracellular phosphoenolpyruvate pool was at least twofold higher during gluconeogenesis than during glycolysis. The finding that the use of glutamate as the sole nitrogen source resulted in at least a fivefold elevation of the alpha-ketoglutarate pool suggests a role for alpha-ketoglutarate in the repression of the enzymes of the tricarboxylic acid cycle responsible for alpha-ketoglutarate synthesis. Not one of the metabolites assayed appears to function as a signal of the nutrient deprivation which accompanies the initiation of sporulation.  相似文献   

19.
20.
The effects of supplied ammonium and nitrate on the amino and organic acid contents and enzyme activities of cell suspension cultures of Acer pseudoplatanus L. were examined. Regardless of nitrogen source the pH of the culture medium strongly affected the malate and citrate contents of the cells; these organic acid pools declined at pH 5, but increased at pH 7 and 8. Over a period of two days, ammonium had little effect on the responses of the organic acid pool sizes to the pH of the medium. In contrast, ammonium had a strong influence on amino acid pool sizes, and this effect was dependent on the pH of the medium. At pH 5 there was no increase in cell ammonium or amino acid contents, but at higher pH values cellular ammonium content rose, accompanied by accumulation of glutamine, glutamate and asparagine. Over several days, supplied ammonium led to an increase in activity of glutamate dehydrogenase irrespective of any changes in internal ammonium and amino acid contents. If the pH of the medium was allowed to fall below pH 4 in the presence of ammonium, phosphoenolpyruvate (PEP) carboxylase activity declined to a very low value over several days; at higher pH, the activity of this enzyme, and that of NAD malic enzyme and NAD malate dehydrogenase, remained substantial irrespective of whether the nitrogen source was NH+4 or NO-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号