首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This light and transmission electron microscopical study shows that the first polar body is given off before ovulation and that part of its cell membrane and that of the surrounding oocyte have long microvilli at the time of its ejection. Several layers of cumulus cells initially surround the secondary oocyte and first polar body, but the ovulated oocytes in the oviducts in the process of being fertilized do not have cumulus cells around them. Partly expelled second polar bodies occur in the oviduct; they are elongated structures that lack organelles and have electron-dense nuclei. A small fertilization cone appears to form around the sperm tail at the time of sperm entry into the egg and an incorporation cone develops around the sperm head in the egg cytoplasm. In three fertilized eggs a small hole was seen in the zona, which was presumably formed by the spermatozoon during penetration. Cortical granules, present in ovarian oocytes, are not seen in fertilized tubal or uterine eggs; release of their contents probably reduces the chances of polyspermy, although at least one polyspermic fertilized egg was seen and several other fertilized eggs had spermatozoa within the zona pellucida. In the zygote the pronuclei come to lie close together, but there was no evidence of fusion. A "yolk mass," which becomes eccentric before ovulation, is extruded by the time the two-cell embryos are formed, but many vacuoles remain in the non-yolky pole of the egg. A shell membrane of variable thickness is present around all uterine eggs but its origin remains undetermined.  相似文献   

2.
Summary Externally applied membrane permeable cAMP derivatives and the injection of cAMP induce oocyte maturation in several species of hydrozoans. This technique for inducing oocyte maturation has been used to study ion permeability changes, maturation promoting factor activity and surface tension changes during maturation. Oocyte membrane potential remains constant during maturation. Cyclic AMP induced maturation proceeds in the absence of external Ca2+, K, Mg2+ or Na+. Cytoplasm from maturing oocytes that induces oocyte maturation when it is injected into untreated oocytes is produced during cAMP induced maturation. Surface tension, as measured by the application of a standardized force that mechanically deforms individual oocytes, declines during the first part of maturation. This is followed by a sharp rise and fall of surface tension at first and second polar body formation that accompanies a slow rise in the resistance of oocytes to deformation during the last part of maturation. The production of maturation promoting factor activity and some of the changes in surface tension during maturation can occur in the absence of germinal vesicle material. Two early developmental events that follow oocyte maturation are the production of sperm chemoattractant and calcium channel function. Neither of these events occurs in eggs that have undergone maturation in the absence of germinal vesicle material. The addition of germinal vesicle contents from oocytes to eggs that have undergone maturation in the absence of germinal vesicle material initiates calcium channel function. This experiment indicates that the germinal vesicle contains factors that are necessary for post-maturation developmental events.  相似文献   

3.
Hydrozoan eggs are normally fertilized at the site of polar body formation. The female pronucleus is just under the cell membrane at this site. Sperm are attracted to the eggs and aggregate at this site. This paper demonstrates that this site is the only region on the egg surface where the sperm can fuse with the egg. This has been done by cutting unfertilized eggs into fragments containing the site of polar body formation and fragments without this region. Sperm were added to the fragments and their ability to be fertilized was assayed by noting whether or not they cleaved. Only fragments containing the site of polar body formation cleaved. The absence of cleavage in fragments lacking the site of polar body formation cannot be attributed to the inability of these fragments to attract sperm. Such fragments attract sperm for several hours while fragments which contain the site of polar body formation stop attracting sperm a few minutes after fertilization. Cytological studies of egg fragments which do not contain the site of polar body formation show that they do not contain sperm nuclei. The lack of cleavage in these fragments cannot be attributed to the lack of a female pronucleus. By using centrifugation it is possible to move the female pronucleus away from the site of polar body formation. By cutting these centrifuged eggs in an appropriate way it is possible to create egg fragments with the site of polar body formation that lack the female pronucleus and egg fragments that lack the site of polar body formation but contain a female pronucleus. Only fragments which contain the site of polar body formation can be fertilized.  相似文献   

4.
Sperm nuclear decondensing activity in mammalian oocytes is dependent upon the maturational state of the oocyte. It is maximal in mature, metaphase II oocytes and minimal or absent in immature germinal vesicle (GV) and fertilized pronuclear oocytes. Previous studies suggested that this difference may be due to the relative ability of an oocyte to reduce the protamine disulfide bonds in the sperm nucleus. The results of this study show that mature hamster oocytes contain significantly more glutathione (GSH), about 8 mM, and hence more disulfide reducing power, as compared with GV (4 mM) or pronuclear (6 mM) oocytes. Furthermore, the acquisition of sperm nuclear decondensing activity by maturing oocytes can be prevented or delayed by blocking GSH synthesis with L-buthionine-S,R-sulfoximine during the early stages of oocyte maturation. This is the first evidence that modulation of GSH levels during oocyte maturation and fertilization may be a mechanism by which sperm nuclear decondensing activity is regulated.  相似文献   

5.
The present study was conducted to clarify the relationship between histone H1 kinase (H1K) activity and events associated with in vitro fertilization of pig follicular oocytes matured in vitro. Histone H1 kinase has been shown to be homologous with a maturation promoting factor (MPF). Cumulus-oocyte complexes obtained from prepubertal gilts were cultured for 46 h in a modified Waymouth's MB752/1 medium and were then inseminated in vitro with frozen-thawed and preincubated epididymal boar spermatozoa. At 4, 6, 8 and 10 h post insemination, the oocytes were stained with 10 microg/ml Hoechst-33342 and examined under a fluorescent microscope for the stage of fertilization, according to morphological changes of oocyte nuclear chromatin and the extent of sperm penetration. Sperm penetration was observed to occur within 4 h post insemination (20.5%), and the percentage of fertilized oocytes increased (P < 0.01) to 72.9% at 8 h post insemination. Pronuclear formation was observed from 6 h post insemination (3.3%) and the percentage increased (P < 0.01) to 46.8% at 10 h post insemination. In each examination period, H1K activities in unfertilized oocytes at metaphase-II remained unchanged (112.0 fmol/h/oocyte) and were higher (P < 0.01) than those in fertilized oocytes (30.1 fmol/h/oocyte). The H1K activity in fertilized oocytes such as oocytes emitting a second polar body, oocytes with an enlarging sperm head(s) and oocytes with multiple pronuclei did not differ significantly. These results suggest that MPF in pig oocytes is inactivated shortly after sperm penetration and is maintained at the basal level throughout pronuclear formation.  相似文献   

6.
In a previous study we have shown that the addition of growth hormone (GH) during in vitro maturation accelerates nuclear maturation, induces cumulus expansion, and promotes subsequent cleavage and embryonic development. The aim of this study was to investigate whether the promotory effect of GH on subsequent cleavage and blastocyst formation is due to an improved fertilization and whether this effect is caused by an improved cytoplasmic maturation of the oocyte. Therefore, bovine cumulus oocyte complexes (COCs) were cultured for 22 hours in M199 supplemented with 100 ng/ml bovine GH (NIH-GH-B18). Subsequently the COCs were fertilized in vitro. Cultures without GH served as controls. To verify whether the promoted fertilization is caused by the effect of GH on cumulus expansion or oocyte maturation, cumulus cells were removed from the oocytes after in vitro maturation (IVM) and denuded MII oocytes were selected and fertilized in vitro. Both IVM and in vitro fertilization (IVF) were performed at 39°C in a humidified atmosphere with 5% CO2 in air. At 18 hours after the onset of fertilization, the nuclear stage of the oocytes was assessed using 4,6-diamino-2-phenylindole (DAPI) staining. Oocytes with either an metaphase I (MI) or MII nuclear stage and without penetrated sperm head were considered unfertilized; oocytes with two pronuclei, zygotes, and cleaved embryos were considered normally fertilized; and oocytes with more than two pronuclei were considered polyspermic. To evaluate cytoplasmic maturation, the distribution of cortical granules 22 hours after the onset of IVM, and sperm aster formation 8 hours after the onset of fertilization were assessed. In addition, to assess the sperm-binding capacity, COCs were fertilized in vitro, and 1 hour after the onset of fertilization the number of spermatozoa bound to the oocytes was counted. The addition of GH during IVM significantly (P < 0.001) enhanced the proportion of normal fertilized oocytes. Removal of the cumulus cells prior to fertilization and selection of the MII oocytes did not eliminate the positive effect of GH on fertilization. No effect of GH on the sperm-binding capacity of the oocyte was observed. In addition, GH supplementation during IVM significantly (P < 0.001) enhanced the migration of cortical granules and sperm aster formation. It can be concluded that the promotory effect of GH on the developmental competence of the oocyte is due to a higher fertilization rate as a consequence of an improved cytoplasmic maturation. Mol. Reprod. Dev. 49:444–453, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The chromosome passenger complex (CPC) consists of Aurora-B kinase and several other subunits. One of these, incenp, binds Aurora-B and regulates its kinase activity. During Xenopus oocyte maturation, incenp accumulates through translation, contributing to aurora-b activation. A previous study has demonstrated that inhibition of incenp translation during oocyte maturation diminishes aurora-b activation but does not interfere with oocyte maturation, characterized by normal maturation-specific cyclin-b phosphorylation, degradation, and resynthesis. Here we have extended these findings, showing that inhibition of incenp translation during oocyte maturation did not interfere with meiosis I or II, as indicated by the normal emission of the first polar body and metaphase II arrest, followed by the successful emission of the second polar body upon parthenogenetic egg activation. Most importantly, however, when transferred to host frogs and subsequently ovulated, the incenp-deficient eggs were fertilized but failed to undergo mitotic cleavage. Thus, translation of incenp during oocyte maturation appears to be part of oocyte cytoplasmic maturation, preparing the egg for the rapid mitosis following fertilization.  相似文献   

8.
Immature oocytes of the annelid Pectinaria were prematurely fertilized while in the germinal vesicle stage. Fertilization was morphologically normal except for the formation of an enlarged fertilization cone which persisted even after sperm incorporation. However, at 30 min postinsemination, no signs of male pronuclear morphogenesis were detected. Ultrastructural data show that in the cytoplasm of a GV-stage oocyte the sperm nuclear envelope remains intact and the enclosed chromatin remains condensed. Prematurely fertilized eggs were then induced to undergo germinal vesicle breakdown (GVBD). Subsequently male pronuclear development occurred. Thus, the factors in the Pectinaria oocyte which are necessary for sperm transformation develop in the maturing cytoplasm and are dependent upon GVBD. Such prematurely fertilized oocytes fail to display the normal arrest of meiosis at Metaphase I, but instead progress directly to formation of the female pronucleus. Occurrences of normal first cleavage were observed suggesting that prematurely incorporated sperm can be recruited for participation in development.  相似文献   

9.
The normality of in vitro matured oocytes was compared to that of in vivo matured (ovulated) oocytes at the following stages of development: germinal-vesicle breakdown, first polar body formation, fertilization (two polar bodies and two pronuclei with a sperm tail or first cleavage), and fetal development (day 20 fetuses). At all points, the in vitro oocytes exhibited a reduced ability, with oocytes matured cumulus-free having the poorest. The exposure of oocytes to human chorionic gonadotropin (hCG) for 2 hr before collection or during incubation improved their rates of maturation and development to day 20 fetuses but not their ability to undergo fertilization. While beneficial, the exposure to gonadotropins before or during maturation was not essential, as evidenced by the production of two day 20 fetuses matured and fertilized in vitro without any gonadotropin (luteinizing hormone or hCG) treatment in vivo or in vitro. These data demonstrate that in the population of in vitro matured oocytes there exist individuals wholly competent of complete normal development, albeit in a reduced proportion in comparison to normally matured and ovulated oocytes. That the in vitro handling, treatment, and culture of the oocytes may be responsible for some of the reduced developmental ability observed is suggested by the developmental abilities of ovulated oocytes under different conditions. Ovulated oocytes fertilized in the donor had the highest rates of development (46%), followed by those fertilized after transfer into mated recipients' oviducts (20%). The lowest rate was achieved with in vitro fertilized oocytes (7%), which represented the group subject to the greatest degree of manipulation and distinction from the normal in vivo process.  相似文献   

10.
Ultrastructural changes in the maturing oocyte of the sea urchin Hemicentrotus pulcherrimus were observed, with special reference to the behavior of centrioles and chromosomes, using oocytes that had spontaneously started the maturation division process in vitro after dissection from ovaries. The proportion of oocytes entering the maturation process differed from batch to batch. In those eggs that accomplished the maturation division, it took ~4.5-5 h from the beginning of germinal vesicle breakdown to the formation of a second polar body. Serial sections revealed that a young oocyte before germinal vesicle breakdown had a pair of centrioles with procentrioles, located between the presumed animal pole and the germinal vesicle and accompanied by amorphous aggregates of moderately dense material and dense granules (granular aggregate). Just before germinal vesicle breakdown, a pair of fully grown centrioles located in the granular aggregate, which is present until this stage and then disappears, had already separated from another pair of centrioles. In meiosis I, each division pole had two centrioles, whereas in meiosis II each had only one. The two centrioles in the secondary oocyte separated into single units and formed the mitotic figure of meiosis II. The first polar body had two centrioles and the second had only one. The two centrioles in the first polar body did not form the mitotic figure nor did they separate at the time of meiosis II. These results indicate that, in sea urchins, duplication of the centrioles does not occur during the two successive meiotic divisions and the egg inherits only one centriole from the primary oocyte, confirming the results previously reported for starfish oocytes.  相似文献   

11.
Our objective was to examine the developmental fate of sperm nuclei in oocytes fertilized under conditions of meiotic arrest. Therefore zona-free metaphase II oocytes and oocyte fragments (nucleate and anucleate) were fertilized in the presence of colcemid. In anucleate oocyte fragments, normal male pronuclei develop. In contrast, in intact oocytes and nucleate fragments sperm nuclei after initial decondensation undergo secondary condensation. This state is maintained as long as the oocytes are treated with colcemid. When the drug is removed 3 h after insemination, the meiotic spindle(s) is reconstructed, the second polar body(ies) is extruded, and a female pronucleus (or micronuclei) forms. At the same time the sperm nucleus decondenses again and transforms into a male pronucleus. In addition oocytes fertilized in the presence of colcemid could not be refertilized. These observations suggest that oocytes and oocyte fragments fertilized in the presence of colcemid undergo activation despite the failure of pronucleus formation. The inhibitory effect of colcemid on the formation of pronuclei is expressed only in the presence of oocyte chromosomes. We suggest that colcemid stabilizes factors responsible for chromosome condensation that are associated with oocyte chromosomes but not factors (whether the same or different) present in the cytoplasm.  相似文献   

12.
Starfish oocytes or eggs were inseminated at various times between first prometaphase and pronuclear stage, and were subsequently labeled with the thymidine analogue 5-bromo-2'-deoxyuridine (BrdU) in order to detect the onset of DNA synthesis phase (S phase) during the first cell cycle using a monoclonal antibody against BrdU. The interval between fertilization and the first S phase was found to be constant (30-45 min, depending on batches) in eggs fertilized after formation of the first polar body. Eggs fertilized before first polar body formation, however, always entered the S phase 10-20 min after the second polar body formation. On the basis of these observations we conclude that (i) the chain of events triggered by fertilization, collectively called "postactivation process" for the first S phase, goes on in parallel with the process of maturation and (ii) only the final step of the postactivation process is arrested until the termination of meiosis. In eggs that had been fertilized before the first polar body formation, the female and male pronuclei exhibited uniformly distributed chromatin soon after the second polar body formation. In eggs that had been fertilized after the second polar body formation, however, the chromatin of the pronuclei remained fibrillar even during the S phase. Thus full decondensation of chromatin appears to depend on a certain advance in the postactivation process.  相似文献   

13.
Trichlorfon (TCF), an organophosphate insecticide and potent inhibitor of choline esterases, was previously shown to induce first meiotic nondisjunction and spindle aberrations in isolated, follicle cell-denuded mouse oocytes maturing in vitro. To explore dose-response and direct and indirect, potentially synergistic effects of TCF on the somatic cells and the oocyte within a follicle, we presently employed preantral follicle culture. 100 microg/ml TCF added at the time of hormonally stimulated resumption of meiosis of follicle cell-enclosed mouse oocytes, 16 h before in vitro ovulation, induced significant rises in first meiotic nondisjunction in oocytes from preantral follicle culture. Lower concentrations (6 microg/ml TCF) disturbed polar body formation. Nuclear maturation to meiosis II in absence of cytokinesis resulted in significant increases in polyploidy. Oocytes maturing in follicles in the presence of TCF had aberrant second meiotic spindles. Influences of TCF on somatic cell function were evident by reduced follicular mucification in vitro and deceased progesterone production. In contrast to TCF, acetylcholine (0.1-100 microM) increased progesterone production. The observations therefore suggest that TCF influences oocyte maturation and folliculogenesis directly and indirectly. High TCF is aneugenic at first meiotic division in oocytes, irrespective of the presence or absence of follicle cells. At lower concentrations TCF interferes with spindle formation, chromosome congression at meiosis II, and coordination of nuclear and cytoplasmic maturation, posing risks for second meiotic errors. The observations suggest that chronic TCF exposure during maturation in the follicle may predispose oocytes to the formation of chromosomally unbalanced preimplantation embryos after fertilization.  相似文献   

14.
Meiotic chromosomes in an oocyte are not only a maternal genome carrier but also provide a positional signal to induce cortical polarization and define asymmetric meiotic division of the oocyte, resulting in polar body extrusion and haploidization of the maternal genome. The meiotic chromosomes play dual function in determination of meiosis: 1) organizing a bipolar spindle formation and 2) inducing cortical polarization and assembly of a distinct cortical cytoskeleton structure in the overlying cortex for polar body extrusion. At fertilization, a sperm brings exogenous paternal chromatin into the egg, which induces ectopic cortical polarization at the sperm entry site and leads to a cone formation, known as fertilization cone. Here we show that the sperm chromatin-induced fertilization cone formation is an abortive polar body extrusion due to lack of spindle induction by the sperm chromatin during fertilization. If experimentally manipulating the fertilization process to allow sperm chromatin to induce both cortical polarization and spindle formation, the fertilization cone can be converted into polar body extrusion. This suggests that sperm chromatin is also able to induce polar body extrusion, like its maternal counterpart. The usually observed cone formation instead of ectopic polar body extrusion induced by sperm chromatin during fertilization is due to special sperm chromatin compaction which restrains it from rapid spindle induction and therefore provides a protective mechanism to prevent a possible paternal genome loss during ectopic polar body extrusion.  相似文献   

15.
Immature oocytes of the starfish, Asterina pectinifera, are polyspermic. Spermatozoa can enter immature oocytes upon insemination, but the changes associated with the fertilization process in oocytes matured with 1-methyladenine (1-MeAde), such as the formation of aster and pronucleus, were not observed. After immature oocytes, previously inseminated, were matured with 1-MeAde, the formation of the sperm monaster was observed during germinal vesicle breakdown (GVBD). Amphiasters and pronuclei were formed after the formation of the second polar body. The acquisition by oocytes of the capacity to undergo the normal process of fertilization, therefore, occurs during the course of oocyte maturation. After injection of the cytoplasm of maturing oocytes into inseminated immature oocytes, the formation of aster and pronucleus was observed, suggesting that maturation-promoting factor (MPF) may be involved in establishing the cytoplasmic conditions (cytoplasmic maturity) necessary for the fertilization process to occur. In contrast, when enucleated, inseminated halves of immature oocytes were treated with 1-MeAde, only monasters were formed, while in the nucleated halves both amphiasters and sperm pronuclei were formed. Thus, germinal vesicle material is required for the formation of amphiaster and sperm pronucleus but not for the formation of monaster. It is possible that the amount of MPF produced in enucleated halves was sufficient only for the formation of the monaster but not for the formation of the amphiaster and pronucleus, since it has been previously established that germinal vesicle material is necessary for the amplification of MPF. The formation of the monaster in the enucleated halves at a time corresponding to GVBD in nucleated controls suggests that the amount of MPF needed for this event is rather small. For the induction of subsequent fertilization process, large amounts of MPF may be required to establish the necessary cytoplasmic conditions, although other possible role of nuclear material is not excluded.  相似文献   

16.
1-Methyladenine, which has been previously shown to be the hormone responsible for meiosis reinitiation in starfish oocytes, triggers parthenogenetic activation when applied to matured starfish oocytes after emission of the second polar body and formation of the pronucleus. In Marthasterias glacialis and Asterias rubens oocytes parthenogenetic activation includes elevation of a fertilization membrane, cleavage and the formation of normal bipinnaria larvae. Activation is likely to result from 1-methyladenine interaction with the category of stereospecific membrane receptors involved in meiosis reinitiation, since structural requirements of this compound are identical for both biological responses. Appearance of oocyte responsiveness to 1-MeAde after, but not before emission of the second polar body cannot be accounted for by their increased sensitivity to intracellular Ca2+ at that time, although it is shown that Ca2+ mediates hormone effect in inducing parthenogenetic activation. Pretreatment of immature oocytes with the free hormone in excess strongly inhibits the 1-methyladenine-induced parthenogenetic activation of the oocytes when they have completed maturation.It is suggested that reappearance of 1-MeAde sensitivity when oocytes form a pronucleus depends either upon recruitment or new receptor units or on the reactivation of pre-existing inactivated receptors at this stage of oocyte maturation.  相似文献   

17.
The submicroscopic morphology of the vitelline envelope of Bufo arenarum's oocyte change significantly during the maturation and fertilization processes. The morphological changes are related to physiological activity in vivo and can be triggered in vitro by experimental procedures. It is our scope to present the ultrastructure differences of fascicular components of the vitelline envelope in coelomic, "pars recta" conditioned, oviductal, oviposited and fertilized oocytes. Our experimental results indicate that artificial "pars recta" treatment of coelomic oocytes arrange the fascicular components as those of oviposited oocyte, although differences still remain indicating that additional maturation processes take place while the egg pass througth the oviduct. Fertilized or activated oocytes which are refractary to sperm penetration, change the vitelline envelope fascicular components orientation giving a submicroscopical image quite different to those of none fertilized oocytes. These ultrastructural changes define in a clear cut manner the functional states of Bufo arenarum's oocyte.  相似文献   

18.
The newly developed Pol-Scope allows imaging of spindle retardance, which is an optical property of organized macromolecular structures that can be observed in living cells without fixation or staining. Experiments were undertaken to examine changes in meiotic spindles during the initial stages of activation of living mouse oocytes using the Pol-Scope. Parthenogenetic activation of oocytes treated with calcium ionophore evoked a dynamic increase in meiotic spindle retardance, particularly of the midregion, before spindle rotation and second polar body extrusion. The pronounced increase in spindle retardance, which could, for the first time to our knowledge, be quantified in living oocytes, was maintained during polar body extrusion. Spindle retardance of newly in vivo fertilized oocytes was significantly higher than that of ovulated, metaphase II oocytes. Pol-Scope imaging of fertilized oocytes did not affect subsequent development. These results establish that increased spindle retardance precedes polar body extrusion and pronuclear formation. The increased birefringence in the spindle provides an early indicator of oocyte activation. Thus, noninvasive, quantitative imaging of the onset of activation in living oocytes might improve the efficiency of assisted fertilization and other embryo technologies.  相似文献   

19.
Jasplakinolide (JAS), which induces microfilament polymerization and stabilization, inhibits microfilament-mediated events in murine oocyte maturation and fertilization in a fashion unlike the effects of cytochalasin B (CCB) and latranculin A (LAT A). JAS prevents egg polar body emission at a much lower concentration than either CCB or LAT A. Microfilament bundles were detected on the entire egg cortex after JAS exposure. Conversely, microfilament patterns did not change after exposure to CCB, and few microfilaments were observed after exposure to LAT A. Eggs that were allowed to recover from JAS were unable to recover normal microfilament organization. During oocyte maturation, JAS prevented both spindle migration to the oocyte cortex and first polar body emission. During in vitro fertilization, sperm head entered the eggs and formed pronuclei, but sperm tail entry, pronuclear centration, and second polar body emission were not detected. DNA synthesis occurs in these JAS-treated zygotes. JAS inhibited not only the formation, but also the disassembly, of incorporation cones. JAS was also found to prevent cortical granule exocytosis following artificial activation, and cortical granules were still beneath the plasma membrane even after activation. Finally, incorporation of microinjected nonmuscle actin into the microfilament network of mice eggs was delayed by JAS. We conclude that JAS acts as a microfilament inhibitor during maturation and fertilization and is more powerful than other inhibitors. Its mechanism differs in that it promotes assembly and stabilization of microfilaments. JAS is a novel cell permeable tool for the investigation of microfilament-dependent events in early mammalian development.  相似文献   

20.
1-Methyladenine, which has been previously shown to be the hormone responsible for meiosis reinitiation in starfish oocytes, triggers parthenogenetic activation when applied to matured starfish oocytes after emission of the second polar body and formation of the pronucleus. In Marthasterias glacialis and Asterias rubens oocytes parthenogenetic activation includes elevation of a fertilization membrane, cleavage and the formation of normal bipinnaria larvae. Activation is likely to result from 1-methyladenine interaction with the category of stereospecific membrane receptors involved in meiosis reinitiation, since structural requirements of this compound are identical for both biological responses. Appearance of oocyte responsiveness to 1-MeAde after, but not before emission of the second polar body cannot be accounted for by their increased sensitivity to intracellular Ca2+ at that time, although it is shown that Ca2+ mediates hormone effect in inducing parthenogenetic activation. Pretreatment of immature oocytes with the free hormone in excess strongly inhibits the 1-methyladenine-induced parthenogenetic activation of the oocytes when they have completed maturation.It is suggested that reappearance of 1-MeAde sensitivity when oocytes form a pronucleus depends either upon recruitment or new receptor units or on the reactivation of pre-existing inactivated receptors at this stage of oocyte maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号