首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reassess the coevolution between actinomycete bacteria and fungus-gardening (attine) ants. Actinomycete bacteria are of special interest because they are metabolic mutualists of diverse organisms (e.g., in nitrogen-fixation or antibiotic production) and because Pseudonocardia actinomycetes are thought to serve disease-suppressing functions in attine gardens. Phylogenetic information from culture-dependent and culture-independent microbial surveys reveals (1) close affinities between free-living and ant-associated Pseudonocardia, and (2) essentially no topological correspondence between ant and Pseudonocardia phylogenies, indicating frequent bacterial acquisition from environmental sources. Identity of ant-associated Pseudonocardia and isolates from soil and plants implicates these environments as sources from which attine ants acquire Pseudonocardia. Close relatives of Atta leafcutter ants have abundant Pseudonocardia, but Pseudonocardia in Atta is rare and appears at the level of environmental contamination. In contrast, actinomycete bacteria in the genera Mycobacterium and Microbacterium can be readily isolated from gardens and starter-cultures of Atta. The accumulated phylogenetic evidence is inconsistent with prevailing views of specific coevolution between Pseudonocardia, attine ants, and garden diseases. Because of frequent acquisition, current models of Pseudonocardia-disease coevolution now need to be revised. The effectiveness of Pseudonocardia antibiotics may not derive from advantages in the coevolutionary arms race with specialized garden diseases, as currently believed, but from frequent recruitment of effective microbes from environmental sources. Indeed, the exposed integumental structures that support actinomycete growth on attine ants argue for a morphological design facilitating bacterial recruitment. We review the accumulated evidence that attine ants have undergone modifications in association with actinomycete bacteria, but we find insufficient support for the reverse, modifications of the bacteria resulting from the interaction with attine ants. The defining feature of coevolution--reciprocal modification--therefore remains to be established for the attine ant-actinomycete mutualism.  相似文献   

2.
Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ~30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.  相似文献   

3.
Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence.  相似文献   

4.
The fungus-growing ant-microbe mutualism is a classic example of organismal complexity generated through symbiotic association. The ants have an ancient obligate mutualism with fungi they cultivate for food. The success of the mutualism is threatened by specialized fungal parasites (Escovopsis) that consume the cultivated fungus. To defend their nutrient-rich garden against infection, the ants have a second mutualism with bacteria (Pseudonocardia), which produce antibiotics that inhibit the garden parasite Escovopsis. Here we reveal the presence of a fourth microbial symbiont associated with fungus-growing ants: black yeasts (Ascomycota; Phialophora). We show that black yeasts are commonly associated with fungus-growing ants, occurring throughout their geographical distribution. Black yeasts grow on the ants' cuticle, specifically localized to where the mutualistic bacteria are cultured. Molecular phylogenetic analyses reveal that the black yeasts form a derived monophyletic lineage associated with the phylogenetic diversity of fungus growers. The prevalence, distribution, localization and monophyly indicate that the black yeast is a fifth symbiont within the attine ant-microbe association, further exemplifying the complexity of symbiotic associations.  相似文献   

5.
Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites.  相似文献   

6.
Host-parasite associations are shaped by coevolutionary dynamics. One example is the complex fungus-growing ant-microbe symbiosis, which includes ancient host-parasite coevolution. Fungus-growing ants and the fungi they cultivate for food have an antagonistic symbiosis with Escovopsis, a specialized microfungus that infects the ants' fungus gardens. The evolutionary histories of the ant, cultivar and Escovopsis are highly congruent at the deepest phylogenetic levels, with specific parasite lineages exclusively associating with corresponding groups of ants and cultivar. Here, we examine host-parasite specificity at finer phylogenetic levels, within the most derived clade of fungus-growing ants, the leaf-cutters (Atta spp. and Acromyrmex spp.). Our molecular phylogeny of Escovopsis isolates from the leaf-cutter ant-microbe symbiosis confirms specificity at the broad phylogenetic level, but reveals frequent host-switching events between species and genera of leaf-cutter ants. Escovopsis strains isolated from Acromyrmex and Atta gardens occur together in the same clades, and very closely related strains can even infect the gardens of both ant genera. Experimental evidence supports low host-parasite specificity, with phylogenetically diverse strains of Escovopsis being capable of overgrowing all leaf-cutter cultivars examined. Thus, our findings indicate that this host-pathogen association is shaped by the farming ants having to protect their cultivated fungus from phylogenetically diverse Escovopsis garden pathogens.  相似文献   

7.
We profiled the microfungal communities in gardens of fungus-growing ants to evaluate possible species-specific ant-microfungal associations and to assess the potential dependencies of microfungal diversity on ant foraging behavior. In a 1-year survey, we isolated microfungi from nests of Cyphomyrmex wheeleri, Trachymyrmex septentrionalis and Atta texana in Central Texas. Microfungal prevalence was higher in gardens of C. wheeleri (57%) than in the gardens of T. septentrionalis (46%) and A. texana (35%). Culture-dependent methods coupled with a polyphasic approach of species identification revealed diverse and changing microfungal communities in all the sampling periods. Diversity analyses showed no obvious correlations between the number of observed microfungal species, ant species, or the ants' changing foraging behavior across the seasons. However, both correspondence analysis and 5.8S-rRNA gene unifrac analyses suggested structuring of microfungal communities by ant host. These host-specific differences may reflect in part the three different environments where ants were collected. Most interestingly, the specialized fungal parasite Escovopsis was not isolated from any attine garden in this study near the northernmost limit of the range of attine ants, contrasting with previous studies that indicated a significant incidence of this parasite in ant gardens from Central and South America. The observed differences of microfungal communities in attine gardens suggest that the ants are continuously in contact with a diverse microfungal species assemblage.  相似文献   

8.
Reynolds HT  Currie CR 《Mycologia》2004,96(5):955-959
Fungi in the genus Escovopsis are known only from the fungus gardens of attine ants. Previous work has established that these anamorphic fungi, allied with the Hypocreales, are specialized and potentially virulent parasites of the ancient mutualism between attine ants and their fungal cultivars. It is unclear whether the primary nutrient source for the pathogen is the mutualist fungal cultivar or the vegetative substrate placed on the gardens by the ants. Here, we determine whether Escovopsis weberi is a parasite of the fungal cultivar, a competitor for the leaf substrate, or both. Bioassays reveal that E. weberi exhibits rapid growth on pure cultivar and negligible growth on sterilized leaf fragments. Light microscopy examination of hyphalhyphal interactions between E. weberi and the ant fungal cultivar indicate that E. weberi, unlike invasive necrotrophs that always penetrate host hyphae, can secrete compounds that break down host mycelium before contact occurs. Thus, E. weberi is a necrotrophic parasite of the fungal cultivar of attine ants.  相似文献   

9.
We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.  相似文献   

10.
The attine ant-microbe system is a quadripartite symbiosis, involving a complex set of mutualistic and parasitic associations. The symbiosis includes the fungus-growing ants (tribe Attini), the basidiomycetous fungi the ants cultivate for food, specialized microfungal parasites (in the genus Escovopsis) of the cultivar, and ant-associated mu tualistic filamentous bacteria that secrete antibiotics specifically targeted to suppress the growth of Escovopsis. In this study, we conduct the first phylogenetic analysis of the filamentous mutualistic bacteria (actinomycetes) associated with fungus-growing ants. The filamentous bacteria present on 3 genera of fungus-growing ants (Acromyrmex, Trachy myrmex, and Apterostigma) were isolated from 126 colonies. The isolated actinomycetes were grouped into 3 distinct morphological types. Each morphological type was specific to the ant genus from which it was isolated, suggesting some degree of host specificity. The phylogenetic position of the 3 morphotypes was estimated using 16S rDNA for representative strains. The 8 isolates of actinomycetes sequenced are in the family Pseudonocardiaceae (Actino mycetales) and belong to the genus Pseudonocardia. Transmission electron microscopy examination of the actino mycete associated with the cuticle of Acromyrmex sp. revealed bacterial cells with an outer electron-dense membrane, consistent with actinomycetes in the genus Pseudonocardia. Ant-associated Pseudonocardia isolates did not form a monophyletic group, suggesting multiple acquisitions of actinomycetes by fungus-growing ants over their evolutionary history.  相似文献   

11.
Acromyrmex leaf-cutting ants maintain two highly specialized, vertically transmitted mutualistic ectosymbionts: basidiomycete fungi that are cultivated for food in underground gardens and actinomycete Pseudonocardia bacteria that are reared on the cuticle to produce antibiotics that suppress the growth of Escovopsis parasites of the fungus garden. Mutualism stability has been hypothesized to benefit from genetic uniformity of symbionts, as multiple coexisting strains are expected to compete and, thus, reduce the benefit of the symbiosis. However, the Pseudonocardia symbionts are likely to be involved in Red-Queen-like antagonistic co-evolution with Escovopsis so that multiple strains per host might be favoured by selection provided the cost of competition between bacterial strains is low. We examined the genetic uniformity of the Pseudonocardia symbionts of two sympatric species of Acromyrmex ants by comparing partial sequences of the nuclear Elongation Factor-Tu gene. We find no genetic variation in Pseudonocardia symbionts among nest mate workers, neither in Acromyrmex octospinosus, where colonies are founded by a single queen, nor in Acromyrmex echinatior, where mixing of bacterial lineages might happen when unrelated queens cofound a colony. We further show that the two ant species maintain the same pool of Pseudonocardia symbionts, indicating that horizontal transmission occasionally occurs, and that this pool consists of two distinct clades of closely related Pseudonocardia strains. Our finding that individual colonies cultivate a single actinomycete strain is in agreement with predictions from evolutionary theory on host-symbiont conflict over symbiont mixing, but indicates that there may be constraints on the effectiveness of the bacterial symbionts on an evolutionary timescale.  相似文献   

12.
Fungus-growing attine ants are under constant threat from fungal pathogens such as the specialized mycoparasite Escovopsis, which uses combined physical and chemical attack strategies to prey on the fungal gardens of the ants. In defence, some species assemble protective microbiomes on their exoskeletons that contain antimicrobial-producing Actinobacteria. Underlying this network of mutualistic and antagonistic interactions are an array of chemical signals. Escovopsis weberi produces the shearinine terpene-indole alkaloids, which affect ant behaviour, diketopiperazines to combat defensive bacteria, and other small molecules that inhibit the fungal cultivar. Pseudonocardia and Streptomyces mutualist bacteria produce depsipeptide and polyene macrolide antifungals active against Escovopsis spp. The ant nest metabolome is further complicated by competition between defensive bacteria, which produce antibacterials active against even closely related species.  相似文献   

13.
14.
Weeding and grooming of pathogens in agriculture by ants   总被引:8,自引:0,他引:8  
The ancient mutualism between fungus-growing ants and the fungi they cultivate for food is a textbook example of symbiosis. Fungus-growing ants' ability to cultivate fungi depends on protection of the garden from the aggressive microbes associated with the substrate added to the garden as well as from the specialized virulent garden parasite Escovopsis. We examined ants' ability to remove alien microbes physically by infecting Atta colombica gardens with the generalist pathogen Trichoderma viride and the specialist pathogen Escovopsis. The ants sanitized the garden using two main behaviours: grooming of alien spores from the garden (fungus grooming) and removal of infected garden substrate (weeding). Unlike previously described hygienic behaviours (e.g. licking and self-grooming), fungus-grooming and garden-removal behaviours are specific responses to the presence of fungal pathogens. In the presence of pathogens, they are the primary activities performed by workers, but they are uncommon in uninfected gardens. In fact, workers rapidly eliminate Trichoderma from their gardens by fungus grooming and weeding, suggesting that these behaviours are the primary method of garden defence against generalist pathogens. The same sanitary behaviours were performed in response to the presence of the specialist pathogen Escovopsis. However, the intensity and duration of these behaviours were much greater in this treatment. Despite the increased effort, the ants were unable to eliminate Escovopsis from their gardens, suggesting that this specialized pathogen has evolved counter-adaptations in order to overcome the sanitary defences of the ants.  相似文献   

15.
Fungus-growing ants, their cultivated fungi and the cultivar-attacking parasite Escovopsis coevolve as a complex community. Higher-level phylogenetic congruence of the symbionts suggests specialized long-term associations of host-parasite clades but reveals little about parasite specificity at finer scales of species-species and genotype-genotype interactions. By coupling sequence and amplified fragment length polymorphism genotyping analyses with experimental evidence, we examine (i) the host specificity of Escovopsis strains infecting colonies of three closely related ant species in the genus Cyphomyrmex, and (ii) potential mechanisms constraining the Escovopsis host range. Incongruence of cultivar and ant relationships across the three focal Cyphomyrmex spp. allows us to test whether Escovopsis strains track their cultivar or the ant hosts. Phylogenetic analyses demonstrate that the Escovopsis phylogeny matches the cultivar phylogeny but not the ant phylogeny, indicating that the parasites are cultivar specific. Cross-infection experiments establish that ant gardens can be infected by parasite strains with which they are not typically associated in the field, but that infection is more likely when gardens are inoculated with their typical parasite strains. Thus, Escovopsis specialization is shaped by the parasite's ability to overcome only a narrow range of garden-specific defences, but specialization is probably additionally constrained by ecological factors, including the other symbionts (i.e. ants and their antibiotic-producing bacteria) within the coevolved fungus-growing ant symbiosis.  相似文献   

16.
We describe a peculiar fungus-coating behavior of the attine ant Mycetosoritis clorindae, where workers plant fungal mycelium on hibernating nestmates. Hibernating nestmates become ultimately enveloped in a live mycelial coat, remain motionless in this coated state, and essentially become integrated into the garden matrix. The shallow nest architecture of M. clorindae (depth of main garden is 15–30 cm) in southern Brazil forces the ants to overwinter at relatively low temperatures in the topmost soil layer. Fungal coating may help the ants to survive the prolonged periods of immobility during winter. Fungus-planting on attine adults is so far unknown from other attine species, but the behavior parallels the planting of mycelium on larvae and pupae occurring in many attine species. Planting of mycelium on adult nestmates may have been overlooked so far in attine ants because this behavior may occur only in dormant nests, which are least frequently collected. The possible adaptive functions of fungus coatings of hibernating adults and developing brood are likely similar, including for example physical protection, prevention of desiccation, shielding against parasites and predators (e.g., army ants), or defense against diseases.  相似文献   

17.
Parasites influence host biology and population structure, and thus shape the evolution of their hosts. Parasites often accelerate the evolution of host defences, including direct defences such as evasion and sanitation and indirect defences such as the management of beneficial microbes that aid in the suppression or removal of pathogens. Fungus-growing ants are doubly burdened by parasites, needing to protect their crops as well as themselves from infection. We show that parasite removal from fungus gardens is more complex than previously realized. In response to infection of their fungal gardens by a specialized virulent parasite, ants gather and compress parasitic spores and hyphae in their infrabuccal pockets, then deposit the resulting pellet in piles near their gardens. We reveal that the ants' infrabuccal pocket functions as a specialized sterilization device, killing spores of the garden parasite Escovopsis. This is apparently achieved through a symbiotic association with actinomycetous bacteria in the infrabuccal pocket that produce antibiotics which inhibit Escovopsis. The use of the infrabuccal pocket as a receptacle to sequester Escovopsis, and as a location for antibiotic administration by the ants' bacterial mutualist, illustrates how the combination of behaviour and microbial symbionts can be a successful defence strategy for hosts.  相似文献   

18.
Symbioses shape all levels of biological organization. Although symbiotic interactions are typically viewed as bipartite associations, with two organisms interacting largely in isolation from other organisms, the presence and importance of additional symbionts is becoming increasingly more apparent. This study examines the importance of a third mutualist within the ancient symbiosis between leaf-cutting ants and their fungal cultivars. Specifically, we experimentally examine the role of a filamentous bacterium (actinomycete), which is typically carried on the cuticle of fungus-growing ants, in suppressing the growth of a specialized microfungal parasite ( Escovopsis ) of the fungus garden. We conducted two-by-two factorial design experiments crossing the presence/absence of actinomycete with the presence/absence of Escovopsis within small sub-colonies of Acromyrmex octospinosus . In these experiments, infection by Escovopsis became much more extensive within fungus gardens and had a greater impact on the health of gardens in those sub-colonies with the bacterium removed from workers as compared to gardens with the bacterium still present on the ants. We establish that the actinomycete bacterium is most abundant on those major workers tending the garden, providing further support that the bacterium is involved in garden hygiene. We also found a significantly higher abundance of actinomycete on workers in colonies experimentally infected with Escovopsis as compared to uninfected control colonies. We suggest that mutualisms between antibiotic-producing microbes and higher organisms may be common associations that are mostly overlooked and that the role of symbionts in reducing the impact of parasites is likely an important aspect in the cost-benefit assessment of mutualisms.  相似文献   

19.
Attine ants cultivate fungi as their most important food source and in turn the fungus is nourished, protected against harmful microorganisms, and dispersed by the ants. This symbiosis evolved approximately 50–60 million years ago in the late Paleocene or early Eocene, and since its origin attine ants have acquired a variety of fungal mutualists in the Leucocoprineae and the distantly related Pterulaceae. The most specialized symbiotic interaction is referred to as “higher agriculture” and includes leafcutter ant agriculture in which the ants cultivate the single species Leucoagaricus gongylophorus. Higher agriculture fungal cultivars are characterized by specialized hyphal tip swellings, so-called gongylidia, which are considered a unique, derived morphological adaptation of higher attine fungi thought to be absent in lower attine fungi. Rare reports of gongylidia-like structures in fungus gardens of lower attines exist, but it was never tested whether these represent rare switches of lower attines to L. gonglyphorus cultivars or whether lower attine cultivars occasionally produce gongylidia. Here we describe the occurrence of gongylidia-like structures in fungus gardens of the asexual lower attine ant Mycocepurus smithii. To test whether M. smithii cultivates leafcutter ant fungi or whether lower attine cultivars produce gongylidia, we identified the M. smithii fungus utilizing molecular and morphological methods. Results shows that the gongylidia-like structures of M. smithii gardens are morphologically similar to gongylidia of higher attine fungus gardens and can only be distinguished by their slightly smaller size. A molecular phylogenetic analysis of the fungal ITS sequence indicates that the gongylidia-bearing M. smithii cultivar belongs to the so-called “Clade 1”of lower Attini cultivars. Given that M. smithii is capable of cultivating a morphologically and genetically diverse array of fungal symbionts, we discuss whether asexuality of the ant host maybe correlated with low partner fidelity and active symbiont choice between fungus and ant mutualists.  相似文献   

20.
《L' Année biologique》1999,38(2):73-89
The ant gardens of tropical America constitute one of the most unique forms of plant-insect associations. The ants that initiate these gardens belong to a limited number of species disparate from a phylogenetic point of view, but having the following two behavioural characteristics: (1) the capacity to build an arboreal nest rich in humus; and (2) an attraction towards the fruits and/or seeds of epiphytes that they retrieve to the nest and incorporate into its walls. The seeds then germinate, and produce a root system that reinforces the nest structure. The demographic growth of the ant colony is accompanied by an increase in the size of the nest which is the result of (1) the constant provisioning of diverse materials and seeds, and (2) the growth of the root system. Moreover, the volume of the ant garden increases as the host tree grows. An ant garden is an association which benefits both the ants and the epiphytes. In addition to the structural role played by their roots, the epiphytes often provide nourishment to the ants living in the ant gardens through fruits and extra-floral nectaries. In return, the ants disseminate the epiphyte seeds and protect the epiphytes from eventual defoliators. Different ant species can be found in the same garden. Such cohabitation can be the result of parabiosis, but, in the oldest gardens, certain ants are the secondary residents that partially or entirely excluded the ants that initiated the garden. An ant garden constitutes a relatively stable nesting site, something rather rare in this environment, such that different parts of the garden can be occupied by numerous Arthropods (including other social insects such as stingless-bees) on the condition that these insects can cohabit with the ants. As such, an ant garden can constitute a veritable microecosystem. While it is not possible to demonstrate a strict or obligate interspecific relationship between ant and plant species, only several rare species among the numerous neotropical epiphytes are involved and a certain number of preferences can be underlined. We present here in detail the characteristics of the ant gardens initiated in French Guiana by the parabiotic associations Crematogaster limata parabiotica/Camponotusfemoratus, and by the ants Pachycondyla goeldii and Odontomachus mayi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号