首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
To investigate the functions of recombinant human dentin phosphoprotein (rhDPP), we examined cell adhesion, viability and the odontoblastic differentiation activity of human dental pulp cells (hDPCs). Firstly, rhDPP was constructed using pBAD-HisA plasmid in Escherichia coli. Cell adhesion and viability of hDPCs by rhDPP was examined using a crystal violet assay and a MTT assay, ALP, mineralization activity and odontoblastic differentiation-related mRNA levels of hDPCs were measured to elucidate the odontoblastic differentiation effect of rhDPP on hDPCs. Initially, rhDPP significantly and dose-dependently increased hDPCs adhesion versus the untreated control (p?<?0.05). Cell viability was also significantly increased by rhDPP at 5?days (p?<?0.001). Furthermore, the odontoblastic differentiation effect of rhDPP was verified by measuring ALP activity, mineralization activity and the mRNA levels of odontoblastic differentiation markers. Taken together, rhDPP is expected to play an important role on hDPCs, thereby suggesting its potential use for tooth repair and regeneration.  相似文献   

2.
In this study, starting from human dental pulp cells cultured in vitro, we simulated reparative dentinogenesis using a medium supplemented with different odontogenic inductors. The differentiation of dental pulp cells in odontoblast-like cells was evaluated by means of staining, and ultramorphological, biochemical and biomolecular methods. Alizarin red staining showed mineral deposition while transmission electron microscopy revealed a synthesis of extracellular matrix fibers during the differentiation process. Biochemical assays demonstrated that the differentiated phenotype expressed odontoblast markers, such as Dentin Matrix Protein 1 (DMP1) and Dentin Sialoprotein (DSP), as well as type I collagen. Quantitative data regarding the mRNA expression of DMP1, DSP and type I collagen were obtained by Real Time PCR. Immunofluorescence data demonstrated the various localizations of DSP and DMP1 during odontoblast differentiation. Based on our results, we obtained odontoblast-like cells which simulated the reparative dentin processes in order to better investigate the mechanism of odontoblast differentiation, and dentin extracellular matrix deposition and mineralization.Key words: dental tissue, in vitro differentiation, DMP1, DSP, type I collagen  相似文献   

3.
4.
Rat dentin contains a major sialic acid-rich glycoprotein, DSP, with an overall composition similar to that of bone sialoproteins but whose biological role in dentinogenesis is unknown. Using polyclonal affinity-purified antibodies to rat DSP and four immunohistochemical methods of detection, we studied the cell and tissue localization of DSP and the time course of its appearance during odontoblast differentiation. DSP first appeared within young odontoblasts concomitant with early secretion of pre-dentin matrix and before the onset of mineralization but was absent in pre-odontoblasts. DSP immunostaining also localized within secretory odontoblasts and was intense in odontoblastic processes. Early pre-dentin stained positive for DSP, in contrast to more mature pre-dentin, where immunoreactivity was less intense and more restricted to odontoblastic processes. In the zone of mineralized dentin matrix, a moderate and uniform staining pattern was evident. Intense immunostaining was also seen within the cells and matrix of dental pulp during dentinogenesis. Other cells and tissues within the tooth organ and those surrounding it were non-reactive. These findings suggest that DSP is developmentally expressed in cells of the odontoblastic lineage and may be a biochemical marker of odontoblastic activity.  相似文献   

5.
In addition to bone, the dentin‐pulp complex is also influenced by menopause, showing a decreased regenerative capacity. High levels of follicle‐stimulating hormone (FSH) during menopause could directly regulate bone metabolism. Here, the role of FSH in the odontogenic differentiation of the dentin‐pulp complex was investigated. Dental pulp stem cells (DPSCs) were isolated. CCK‐8 assays, cell apoptosis assays, Western blotting (WB), real‐time RT‐PCR, alkaline phosphatase activity assays, and Alizarin Red S staining were used to clarify the effects of FSH on the proliferation, apoptosis and odontogenic differentiation of the DPSCs. MAPK pathway‐related factors were explored by WB assays. FSH and its inhibitor were used in OVX rats combined with a direct pulp‐capping model. HE and immunohistochemistry were used to detect reparative dentin formation and related features. The results indicated that FSH significantly decreased the odontogenic differentiation of the DPSCs without affecting cell proliferation and apoptosis. Moreover, FSH significantly activated the JNK signalling pathway, and JNK inhibitor partly rescued the inhibitory effect of FSH on DPSC differentiation. In vivo, FSH treatment attenuated the dentin bridge formation and mineralization‐related protein expression in the OVX rats. Our findings indicated that FSH reduced the odontogenic capacity of the DPSCs and was involved in reparative dentinogenesis during menopause.  相似文献   

6.
The selective in vitro expansion and differentiation of multipotent stem cells are critical steps in cell‐based regenerative therapies, while technical challenges have limited cell yield and thus affected the success of these potential treatments. The Rho GTPases and downstream Rho kinases are central regulators of cytoskeletal dynamics during cell cycle and determine the balance between stem cells self‐renewal, lineage commitment and apoptosis. Trans‐4‐[(1R)‐aminoethyl]‐N‐(4‐pyridinyl)cylohexanecarboxamidedihydrochloride (Y‐27632), Rho‐associated kinase (ROCK) inhibitor, involves various cellular functions that include actin cytoskeleton organization, cell adhesion, cell motility and anti‐apoptosis. Here, human periodontal ligament stem cells (PDLSCs) were isolated by limiting dilution method. Cell counting kit‐8 (CCK8), 5‐ethynyl‐2′‐deoxyuridine (EdU) labelling assay, cell apoptosis assay, cell migration assay, wound‐healing assay, alkaline phosphatase (ALP) activity assay, Alizarin Red S staining, Oil Red O staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) were used to determine the effects of Y‐27632 on the proliferation, apoptosis, migration, stemness, osteogenic and adipogenic differentiation of PDLSCs. Afterwards, Western blot analysis was performed to elucidate the mechanism of cell proliferation. The results indicated that Y‐27632 significantly promoted cell proliferation, chemotaxis, wound healing, fat droplets formation and pluripotency, while inhibited ALP activity and mineral deposition. Furthermore, Y‐27632 induced PDLSCs proliferation through extracellular‐signal‐regulated kinase (ERK) signalling cascade. Therefore, control of Rho‐kinase activity may enhance the efficiency of stem cell‐based treatments for periodontal diseases and the strategy may have the potential to promote periodontal tissue regeneration by facilitating the chemotaxis of PDLSCs to the injured site, and then enhancing the proliferation of these cells and maintaining their pluripotency.  相似文献   

7.
8.
9.
10.
NG2+ cells have been proven to differentiate into odontoblasts in vivo, and their contribution to odontoblasts is significantly increased, especially after tooth injury. However, their characteristics in vitro, especially under an inflammatory environment, are still not fully understood. Therefore, this study aimed to explore their proliferation, migration, and odontoblastic differentiation ability after treatment with lipopolysaccharide (LPS) in vitro. In our study, NG2 + cells were isolated from the human dental pulp by magnetic‐activated cell sorting, and these isolated cells were proven to be NG2 + by immunostaining. When compared with human dental pulp cells (hDPCs), the NG2 + cells showed no significant differences in cell migration with or without LPS incubation, but their proliferative ability was weaker. When treated with LPS, NG2 + cells expressed elevated levels of pro‐inflammatory cytokines including interleukin‐1β (IL‐1β), IL‐6, IL‐8, and tumor necrosis factor‐α, and among these, the expression of IL‐1β and IL‐6 were higher than that of hDPCs. Their multipotent differentiation potential was confirmed by the induction of odontoblastic and adipogenic differentiation, and LPS increased their odontoblastic differentiation capacity. In the odontoblastic differentiation process, Wnt5a, BMP2, and BMP7 mRNA were increased, while the canonical Wnt‐related genes were decreased. In conclusion, the LPS stimulation promotes the migration, proliferative, and odontoblastic differentiation ability of NG2 + cells from the human dental pulp in vitro, and bone morphogenetic protein and the noncanonical Wnt pathway may be involved in their odontoblastic differentiation. These results indicated their special roles in tooth injury repair and potential application in pulp regeneration.  相似文献   

11.
Kim do Y  Jung MS  Park YG  Yuan HD  Quan HY  Chung SH 《BMB reports》2011,44(10):659-664
As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).  相似文献   

12.
13.
MicroRNAs (miRNAs) play an essential role in regulating cell differentiation either by inhibiting mRNA translation or by inducing its degradation. However, the role of miRNAs in odontoblastic cell differentaion is largely unknown. In the present study, we demonstrate that the expression of miR-27 was significantly increased during MDPC-23 odontoblastic cell differentiation. Furthermore, the up-regulation of miR-27 promotes the differentiation of MDPC-23 odontoblastic cells and accelerates mineralization without cell proliferation. In addition, our results of target gene prediction revealed that the mRNA of adenomatous polyposis coli (APC) associated with Wnt/β-catenin signaling pathway has miR-27 binding site in the its 3′ UTR and is suppressed by miR-27. Subsequentially, the down-regulated APC by miR-27 triggered the activation of Wnt/β-catenin signaling through accumulation of β-catenin in the nucleus. Our data suggest that miR-27 promotes MDPC-23 odontoblastic cell differentiation by targeting APC and activating Wnt/β-catenin signaling. Therefore, miR-27 might be considered a critical candidate as an odontoblastic differentiation molecular target for the development of miRNA based therapeutic agents in the dental medicine.  相似文献   

14.
The mineralization of dental pulp stem cells is an important factor in the tissue engineering of teeth, but the mechanism is not yet obvious. This study aimed to identify the effect of Stathmin on the proliferation and osteogenic/odontoblastic differentiation of human dental pulp stem cells (hDPSCs) and to explore whether the Shh signalling pathway was involved in this regulation. First, Stathmin was expressed in the cytoplasm and on the cell membranes of hDPSCs by cell immunofluorescence. Then, by constructing a lentiviral vector, the expression of Stathmin in hDPSCs was inhibited. Treatment with Stathmin shRNA (shRNA‐Stathmin group) inhibited the ability of hDPSCs to proliferate, as demonstrated by a CCK8 assay and flow cytometry analysis, and suppressed the osteogenic/odontoblastic differentiation ability, as demonstrated by alizarin red S staining and osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) activity, compared to that of hDPSCs from the control shRNA group. Molecular analyses showed that the Shh/GLI1 signalling pathway was inhibited when Stathmin was silenced, and purmorphamine, the Shh signalling pathway activator, was added to hDPSCs in the shRNA‐Stathmin group, real‐time PCR and Western blotting confirmed that expression of Shh and its downstream signalling molecules PTCH1, SMO and GLI1 increased significantly. After activating the Shh signalling pathway, the proliferation of hDPSCs increased markedly, as demonstrated by a CCK8 assay and flow cytometry analysis; osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) expression also increased significantly. Collectively, these findings firstly revealed that Stathmin‐Shh/GLI1 signalling pathway plays a positive role in hDPSC proliferation and osteogenic/odontoblastic differentiation.  相似文献   

15.
16.
黄芩素对猪前体脂肪细胞增殖分化的影响   总被引:1,自引:1,他引:1  
研究黄芩素(BAI)对猪前体脂肪细胞增殖分化的影响,并探讨其可能的作用机制。原代培养猪前体脂肪细胞,采用油红O染色观察细胞分化的形态学变化;MTT检测细胞增殖状况;油红O染色提取定量分析细胞内脂肪生成及细胞分化程度;分光光度法测定脂肪酸合酶(FAS)的活性;逆转录-聚合酶链反应(RT-PCR)检测分化特异基因过氧化物酶体增殖物激活受体γ2(PPARγ2)mRNA表达变化。结果显示,前体脂肪细胞在分化成脂肪细胞的过程中,其形态由梭形变成椭圆形、圆形,细胞内充满大小不一的脂滴;BAI浓度在160~640μmol/L时显著抑制其增殖(P<0.05)、BAI浓度为40~320μmol/L时显著抑制PPARγ2mRNA表达和FAS的活性,并抑制细胞分化(P<0.05)。以上结果说明,BAI对前体脂肪细胞增殖分化均有一定抑制作用,BAI可能通过抑制PPARγ2mRNA表达和降低FAS活性,从而抑制猪前体脂肪细胞分化。  相似文献   

17.
Mesenchymal stem cells (MSC), isolated from dental tissues, are largely studied for future application in regenerative dentistry. In this study, we used MSC obtained from human dental pulp (DPSC) of normal impacted third molars that, when cultured in lineage-specific inducing media, differentiate into osteoblasts and adipocytes (evaluated by Alizarin Red S and Red Oil O stainings, respectively), thus showing a multipotency. We confirmed that DPSC, grown under undifferentiating conditions, are negative for hematopoietic (CD45, CD31, CD34, CD144) and positive for mesenchymal (CD29, CD90, CD105, CD166, CD146, STRO-1) markers, that underwent down-regulation when cells were grown in osteogenic medium for 3 weeks. In this condition, they also exhibit an increase in the expression of osteogenic markers (RUNX-2, alkaline phosphatase) and extracellular calcium deposition, whereas the expression of receptors (VEGFR-1 and -2) for vascular endothelial growth factors (VEGF) and related VEGF binding proteins was similar to that found in undifferentiated DPSC. Exposure of DPSC growing under undifferentiating or osteogenic conditions to VEGF-A165 peptide (10-40 ng/ml) for 8 days dose- and time-dependently increased the number of proliferating cells without inducing differentiation towards endothelial lineage, as evaluated by the lack of expression of specific markers (CD31, CD34, CD144). Additionally, exposure of DPSC cultured in osteogenic medium to VEGF-A165 for a similar period enhanced cell differentiation towards osteoblasts as evaluated after 14 and 21 days by Alizarin Red S staining and alkaline phosphatase activity quantification. These findings may have clinical implications possibly facilitating tissue repair and remodeling.  相似文献   

18.
Hyperprolactinemia is one of the risk factor of decrease in bone mass which has been believed to be mediated by hypogonadism. However, the presence of prolactin receptor in human osteosarcoma cell line and primary bone cell culture from mouse calvariae supported the hypothesis of a direct prolactin (PRL) action on bone cells. Therefore, the aim of this study was to investigate the role of PRL and its signal transduction pathway in the regulation of bone metabolism via osteoblast differentiation. Human pre‐osteoblasts (SV‐HFO) that differentiate in a 3‐week period from proliferating pre‐osteoblasts (days 2–7) to extracellular matrix producing cells (days 7–14) which is eventually mineralized (days 14–21) were used. Concentration of PRL mimicked a lactating period (100 ng/ml) was used to incubate SV‐HFO for 21 days in osteogenic medium. Human prolactin receptor mRNA and protein are expressed in SV‐HFO. PRL significantly decreased osteoblast number (DNA content) which was due to a decrease in proliferation. PRL increased osteogenic markers, RUNX2 and ALP in early stage of osteoblast differentiation while decreasing it later suggesting a bi‐directional effect. Calcium measurement and Alizarin red staining showed a reduction of mineralization by PRL while having neither an effect on osteoblast activity nor RANKL/OPG mRNA ratio. We also demonstrated that PRL action on mineralization was not via PI‐3 kinase pathway. The present study provides evidence of a direct effect of prolactin on osteoblast differentiation and in vitro mineralization. J. Cell. Biochem. 107: 677–685, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
He H  Yu J  Liu Y  Lu S  Liu H  Shi J  Jin Y 《Cell biology international》2008,32(7):827-834
Two crucial growth factors, FGF2 and TGFbeta1, were investigated in this study to determine their inductive effects on the odontoblastic differentiation of human dental pulp stem cells (DPSCs) in vitro. DPSCs were isolated by immunomagnetic bead selection using the STRO-1 antibody, and then co-cultured respectively with FGF2, TGFbeta1 and FGF2+TGFbeta1. The results showed that FGF2 can exert a significant effect on the cell proliferation, while TGFbeta1 or FGF2+TGFbeta1 can initiate an odontoblast-like differentiation of DPSCs. Moreover, FGF2 can synergistically upregulate the effects of TGFbeta1 on the odontoblastic differentiation of DPSCs, as indicated by the increased alkaline phosphatase activity, the polarized cell appearance and secretary ultrastructural features, the formation of mineralized nodules and the gene/protein expression of dentin sialoprotein and dentin matrix protein-1. Together, FGF2 acted primarily on the cell proliferation, while TGFbeta1 and FGF2+TGFbeta1 mainly stimulated the odontoblastic differentiation of DPSCs. This study provides interesting progress in the odontoblastic differentiation of DPSCs induced by FGF2 and TGFbeta1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号